
1%m

WFY marRIff

MRTU T

'01

A Report Generator

Volume II

Mark T. Maybury

(Cambridge University Wolfson College, 1987
Engineering Department

Trumpington Street
Cambridge CB2 IPZ

& W mpg

PW 1 • atf

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whe~n O.I.,E.,.d).__________________

REPORT DOCIUMENTA:TION PAGE BEOECMLEIGFR
1REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/CI/NR 88- 13-f ____________

4. TITLE (d Su~btitle) 5. TYPE OF REPORT A PERIOD COVERED

A uLPOLT GE rt~(MS THESIS
VOL SD U L~I c- K~ LCef T PERFORMI IG 01G. REPORT NUMBER

7. AUTHOR(.) 8 CONTRACT OR GRANT NUMBER(.)

A P s'TIk 4 ,. A Mi3V

9. PERFORMING ORGANIZATION NAME AND ADDRESS IS. PROGRAM ELEMENT PROJECT. TASK
AREA A WORK UNIT'NUMBERS

AFIT STUDENT AT: CAM~runxCL_ uK)tVi~siry

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

1988
13. NUMBER OF PAGES

IC MONjlITORING AGENCY NAME A ADDRESS(iI different from, Controllng Oficeo) I5. SECURITY CLASS. (of thi. ,epoll)

Wright-Patterson AFB OH 45433-6583 UNCLASSIFIED
IS.. DECL ASSI FICATION' DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of tis Report)

DISTRIBUTED UNLIMITED: APPROVED FOR PUBLIC RELEASE

IT. DISTRIBSUTION STATEMENT (oflb. .b.-i,.it en...d In Block 20, If dif-ent I,.., Repent)

SAME AS REPORT

lB. SUPPLEMENTARY NOTES Approved for Public 11lease: IAs FR 190-1
LYNN E. WOLAVER x
Dean for Research 'g'r)Professional Development
Air Force Institute~bf Technolo
Wright-Patterson AFB OH 45433-6R3

I9. KEY WORDS (Continuon nn,.o.e eld. If neoo...ry od Identify by block nuinber)

20. ABSTRACT (Contine on reverm. side it noesroy end Identify by block nuilbin)

ATTA CHE D

DD 1473 EDITION OF I NOV 65 IS OBSOLETE !CAlFE
SECURITY CLASSIFICATION OF THIS PAGE (When D;l. Enteed)

Contents

I INTRODUCTION

1.1 Software Methodology

1.2 System Organisation

2 MAIN MODULE

3 SUPPORT MODULE

3.1 Macro, I/O, and Data Structures

3.2 Debugging Facilities

4 KNOWLEDGE BASE INTERFACE

4.1 Frame Knowledge Formalism

4.2 Knowledge Base Creation

4.3 Frame Access

5 TEXT MODULE

6 RHETORICAL PREDICATE SEMANTICS

7 FOCUS AND ANAPHOR ALGORITHMS

8 TRANSLATE MODULE

9 RELATIONAL GRAMMAR MODULE

10 GENERATE MODULE

10.1 Debugging aids

10.2 Lexical Access System

10.3 Chart and Unification Routines

11 REALISATION MODULE

12 KNOWLEDGE SOURCES

12.1 Montague Grammar

12.2 Neuropsychology Dictionary and Knowledge Base

12.2 Photography Dictionary and Knowledge Base

13 SYSTEM OUTPUT

-

i 4

pp

A Report Generator
"4

CHAPT'R 1

Introduction

This document is volume If of an M. Phil. thesis representing a text generatibn system. This portion

contains detailed system software listings for the interested implementor. All code is clean and simple to

unlerstand. Mnemonic variables and function names pervade the software.

1.1 Software Methodology

The software methodology adopted follows from the top-down refinement approach to structured pro-

gramming. System modularity together with localisation of procedures combine to provide efficiency and

consistency. Furthermore, global variables are minimised, iterative constructs are replaced with elegant tail

recursion, and goto statements are forbidden. This good programming practise, consistent throughout the

generation system, should make the code very accessible and, hopefully, reusable with minimal effort. Where

primitive functions were repeated frequcntly, macros were developed for rapid execution.

1.2 System Organisation

'The software is listed according to the flow of information in the system. First, the main module, which

loads in all the sub-modules, is presented. Following this are the mechanisms which interface the linguistical

representations with the underlying knowledge representation. Then text strategies are illustrated followed

by software for semantic, relational and syntactic analysis. A significant investigation was performed on the

development of a successful focus selection algorithm, which is also presented.

The generation module has a feature dictionary system together with unification routines for the com-

parison of syntactic features and generation of well formed grammatical constituents. Finally, the realisation

rontines are presented (including linearisation, morphological synthesis and orthographic formating). The

knowlhdge sources for testing are presented followed by some system output.

All software is well docunmented and includes a title, purpose, copywrite, and often a linguistic theory

or principle behind the code. Each function is described in Enlish so that even hacker's who speak dialects! ., . I,

other than LISP can understand. , '.i2 " - t -- ',

- i

f L9

• _____-__- __•

A Report Generator

CHAPTR I

Introduction

This document is volume II of an M. Phil. thesis representing a text generation system. This portion

contains detailed system software listings for the interested implementor. All code is clean and simple to

understand. Mnemonic variables and function iiames pervade the software.

1.1 Software Methodology

The software methodology adopted follows from the top-down refinement approach to structured pro-

gramming. System modularity together with localisation of procedures combine to provide efficiency and

consistency. Furthermore, global variables are minimised, iterative constructs are replaced with elegant tail

recursion, and goto statements are forbidden. This good programming practise, consistent throughout the

generation system, should make the code very accessible and, hopefully, reusable with minimal effort. Where

primitive functions were repeated frequently, macros were developed for rapid execution.

1.2 System Organisation

The software is listed according to the flow of information in the system. First, the main module, which

loads in all the sub-modules, is presented. Following this are the mechanisms which interface the linguistical

representations with the underlying knowledge representation. Then text strategies are illustrated followed

by software for semantic, relational and syntactic analysis. A significant investigation was performed on the

development of a successful focus selection algorithm, which is also presented.

The generation module has a feature dictionary system together with unification routines for the com-

parison of syntactic features and generation of well formed grammatical constituents. Finally, the realisation

routines are presented (including linearisation, morphological synthesis and orthographic formating). The

knowledge sources for testing are presented followed by some system output.

All software is well documented and includes a title, purpose, copywrite, and often a linguistic theory

or principle behind the code. Each function is described in English so that even hacker's who speak dialects

other than LISP can understand.

....,. d-.----------- - . -a au m.- -- [•

GENNY'S KNOWEDGE AND PROCESSES

E1

I-IO

tex scem

FUNCTIONAL LINGUISTIC FRAMEWORK

IW h A4 brain is a region.

I~ [declarative activel
NP [sing 3p masch] VP [sing 3p active

DET NOUN COPULA DET NOUN
, brain is a region .i'-

PREDCATEFOCUS LIST
DRCOBETSURFACE FORM ,

INDIRECT OBJECT

ACTION INSTRUMENT TIME
AGENT RECIPIENT STATE

" .. PATIENT BENEFICIARY MANNER

CONTEXT: given/now
' (LOCAL FOCUS: past foci, current fous, future foci)

- GLOBAL FOCUS: implicit, explicit -

DISCOURSE TOPIC: kb entily
DISCOURSE GOAL: DEFINE/EXPLAINCOMPARE
RHETORICAL PREDICATE: mz
definition brain region (location skull) ,

I- (brain (super-class (value organ))
(sub-class (value left-hem right-hem))
(dda (value (location skull)))
(type (value region))
(importance (value 10))
(damage (value 7)))

*' '- _ .- .- '

-~ - LN

ma tioN enrain Proces

Select Text Structure
Determine Discourse Goal

Focus Globally on Relevant Knowledge

Create a Knowledge Vista
I.nstantiate Rhetorical Predicates using KB

Focus Locally on Connected Knowledge

Select -Rhetorical Predicates

Transform Rhetorical Proposition
to Deep Case Structure

Make Surface Decisions constrained by Pragmatics

Universal Language Representation for Portability

Sentential Realization

lexical translation of knowledge base-predicates
unification with grammar
linearization
morphological generation
orthographic synthesis

SUCTION 2

MAIN MODULE

3.13.1l Sun Aug 30 15:01:37 1987

MODULE: TEXT GENERATOR -- MAIN MODULE
PURPOSE: To generate text from a frame based expert system for

diagnosis of brain disorders.
The system employs text structures and focus mechanisms
to synthesise well focused and coherent text.
The system can be viewed as consisting of a strategic and
tactical component.

STRATEGIC: KB query -- > Text Stuctures -- > Rhetorical Predicates

TACTICAL: Messages
--) Deep Case
--5 Relational Grammar
-- O GPSO Unification Grammar with Features & Function
-- 5 Lineariser
-- 5 Morphology and Orthography

LINGUISTIC
PRINCIPLES: Analysis of human produced text suggests that individuals

utilise common strategies of discourse to achieve a
particular discourse goal. They are constrained in realisingi
this discourse plan by choosing knowledge salient to the
discourse topic as well as uttering acts which are connected
via their focus of attention as well as their role in the
text (as suggested by content, verb choice, and lexical
connectives). GENNY addressed three discourse goals:
DEFINE, EXPLAIN, and COMPARE. Furthermore, the generator
suggests a representation which holds promise to be
independent of text-type, domain, knowledge formalism and
(possibly) language.

OWNER: copywrite Mark T. Maybury, May, 1987.

(include support.l) system support routines

STRATEGIC GENERATION

(include focus.l) ; focus of attention strategies/plans
(include anaphora.1) pronominalization devices

(include kbinterface. :) interface to kb
(include prodicatea.l) rhetorical predicate instantiation
(include text.l) theme-scheme text structures

FUNCTIONAL TRANSLATION

(include tronslate.l) rhetorical predicate -> deep case structure
(include relationalgram.l) deep case structure -> relational grammar

TACTICAL GENERATION

(include generate) ; surface tree generator with unificatior grammar
(include realixation.1) realization routines
(include morphsyn.l(: orphological synthesis routines
(include surface form.i) produce surface form

LINGUISTIC + DOMAIN KNOWLEDGE

(include dictionary.l) dictionary
(include grammar) include grammar
(include initialise) system initialisation

(main) call main routine

SECTION 3

SUPPORT MODULE

Initialime.1 Sun Aug 30 15:37:11 1987

MODULE: INITIALISE
PURPOSE: To initialise top level system variables and knowledge

structures.
OWNER: copywrite Mark T. Maybury, July, 1987.

(preprocess -grammar-) : preprocess grammar for efficiency
(setq *tracing& 1) sat level of tracking
(setq *given* nil) no discourse history
(setq *predicate-typest : rhetorical predicate types for checking

'(definition attributive constituent illustration evidence
example cause-effect compare-contrast inference))

j
C
4

-.. , ,. ,er mh m . ,',,i

support.1 Wed Aug 19 00:37:52 1987

MODULE: TEXT GENERATOR -- SUPPORT MODULE
PURPOSE: To provide support routines for the text generation system.

These includ, general support routines for macros, io, and

debugging.

OWNER: copywrite Mark T. Maybury, June, 1987.

ac, declare global variables, surrounded by "*" for uniqueness ''

(declare (special 'predicate-types* -given-)

(macros t))

**0 general support routines *

(include ~/lisp/lispaids/macros.1) : useful macro primitives
(include -/lisp/lispaids/io.l) : useful lisp io module/interface support

(include ~/lisp/lispaids/stack.l) stack support routines

;** following used for debugging:

(include -/lisp/semantics/save.l) : routine to save items to files

(include -/lisp/lispaids/track.l) tracking functions

t
Ai

macres.1 Wed Aug 19 03:40:00 1907

rUNCTION: Macro definition* (first, second, third, head, tail, etc(
PURPOSE: To perform certain basic operations quickly.
INPUT: Varys, but generally some type of list.
OUTPUT: Some member of the given list or a value such as t or nil.

...............................

arge returns arguments of a given macro argument binding -- ie it returns
the cadr of the given parameter binding.

Idefun arge macro (lyst) ((cadr ,(cadr lyst))
(defun fexprarg macro (lyst) (list 'car (cadr lyst((I

List accessing functions:

(defun first macro (lyst) I'(car ,(args lyst)((
(defun second macro (lyst) '(args .(args lyst)))
(defun third macro (lyst) '(caddr (args lyst)((
(defun fourth macro (lyst) 'tcadddr ,(args lyst)((
(defun fifth macro (lyst) 1(caddddr ,(args lyst)))
Idefun sixth macro flyst) '(cadddddr fmargs lyst)()
(defun seventh macro (lyst) '(caddddddr ,(args lyst(((
(defun eighth macro flyst) '(cadddddddr ,(args lyst)((
(defun ninth macro flyst(l(caddddddddr .(args lyst)l(
(defun tenth macro (lyst) '(cadddddddddr (args lyst)((

(defun head macro (lyst) '(car (args lyst(((
(defun tail macro (lyst('(cdr ,(ergs lyst((

10.1 Wed Aug 19 03:40:06 1981

.........................

MODULE: 10 -- LISP INPUT/OUTPUT TOOLSOX
PURPOSE: To facilitate the development of user interfaces.

...

TERMINAL PRINTING FUNCTIONS #

(print-list list soptional punctuation)#
(print-sentence sentence &optional punctuation) #
(blank number-of-lines) 9
(space number-of-spaces) #
(tell-user message &optional numblanksbefore numblanksafter spacesbefore) #
(print-list list-f-itema) #
(writeln list-of-etrings-atome-lists-or-nuebers) #
(print-list-commas-and list-of-items) 9

FUNCTION: all-but-last
PURPOSE: To return all but the last item in a given list.
INPUT: list
OUTPUT: list minus the last element

(define (all-but-last list)

(cond ((null (tail list)) nil) :tail empty -- > nil
(t (append (list (head list)) attach head of list to

(all-but-last (tail list)) all but last of tail

FUNCTION: length-characters
PURPOSE: To return the length of the characters (plus I space betw~een)
* in a given list.

(define (length-characters lyst)

(cond
((null lyst) 0)
(t (+ (length (esplode (head lyst) () length of first

(length-characters (tail lyst)) length of rest
1 p space between words

FUNCTION: print-list
PURPOSE: To print out a list of atoms with a space between each
* followed by proper punctuation if requested.
INPUT: list of words
OUTPUT: Words separated by one space, with no spaces at end.
AIDED BY: my-patom - prints the given atom

last -=returns the last item in a list.0

(define (my-patom atom) (pstow atom) (princ

* (define (print-list lyst &optional punctuation)

(eapc 'my-patom (all-but-last lyst)) space after all but last
* (patom (car (last lyst))) pLint the last one
* (cond punctuate properly

((eq punctuation 'space) (princ "(-put a apace at the end
((eq punctuation 'period) (princ .()-period if selected
((eq punctuation '7))princ ")):-question

2 io.i Wed Aug 19 03:40:07 1987

((oq punctuation 11) (princ "11)) -exclamation

FUNCTION: writeln and writeout

PUNPOSE: To output a list of atoms, numbers, lists and strings with *

proper spacing and punctuation, as requested.

INPUT: A list of output and optional punctuation.

OUTPUT: Nice Pascal like output.

......... *...... .

(defun writeln fexpr (outputlist)

(writeout outputlist) :call writeout fexpr
(terpri) blank one line

(defun writel fexpr (outputlist)

(writeout outputlist) call writeout fexpr

(define (writeout outlist)
:# ## ## M ll##########

(mapc 'writeoutl (all-but-last outlist)) writeoutl all but last elements
(cond punctuate properly
((eg (car (last outliat)) 'space) (princ "") : - put a space at the end
((eq (car (last outlist)) 'period) (princ .")) - period if selected
((eq (car (last outlist)) '?) (princ "")) - question

((eq (car (last outlist)) 'I) (princ "1)) - exclamation

(t (writeoutl (car (last outlist})((else print it out

FUNCTION: writeoutl
PURPOSE: To output a given item (atom, list, number, or string).

(define (writeoutl item)

(cond
((listp item) (print-list item 'space)) list? -- , space at end
(t (princ item) (princ " ")) prints out an atom,

a string, or a number

FUNCTION: blank *
PURPOSE: To blank given number of lines

(define (blank number)

(msg (N number))

FUNCTION: space
PURPOSE: To print n blank spaces on a line.

(define (space n)

(cond ((eq n 1) Jprinc "I)
(t (princ " ")

(space (subl n))

FUNCTION: tell-user*
PURPOSE: To output a message to the user with optional blanks lines *

before and after the message, as well as optional spaces *

° _ _

g __________

. . -., mMm,, s a .m IIIId i i~m mi9-..

3 io.l Wad Aug 19 03:40:07 1987

* before the Lino is begun.
INPUT: a message and, optionally, # blanks before and after,
* spaces before and punctuation.
OUTPUT: Prints message in proper format to standard output.

.......................*.**

(define (telt-user message

&optional numbLanksbefore numblanksafter specosbefore punctuation)

(cond ((nubr; ub.kbfr)(baknelnseo.(
(cond))numberp spacesbefor9) (apace spacesbefore)
(print-lit ms e
(cond _((numberp numb)lanksafter) (blank numblanksafter)l(

................** **********

FUNCTION: open-input
PURPOSE: To open a port for input.*
INPUT: Name of the iet be geeated.
OUTPUT Retrn inpt prt sybol. aLl by jsetq Sinport (open-pu *

.................

(define (open-input filename Sinporti

$st Sport (infieflnm)

(define (open-output filename Soutport)

)tq Sout ort (outfl fIlename)

FUNCTION5: all-but-last
PURPOSE: To return a1l but the last item in a given list.-
INPUT: Is5t
OUTPUT : li at minus the last element

(define (.11-but-last list)

1con ((nul (cdr list)) (cdr list))talepy-
(t (my-append (list (car list)) attach head of list to

(all-but-last (cdt list)) all but last of tail

FUNCTION: my-append
PURPOSE: To append two lists together.
INPUT: two lists
OUTPUT: first list appended to second list

(define (my-append listl list2)

(con ((nul lit(is) end of listl - return list2
(t (cons (car listl) else add lot member of listl to

my-append (cdt listi) list2); result of recursing on tail

of listi and list2

FUNCTION: print-list-coemas-and
PURPOSE: To print a list with commas between & word and before last. -

(define (print-list-commas-and list-of-items) -

1cond
((null list-of-items) nil
((eq 1(length lisat-of -itm)
(g (ed lit-of-ites

((eq (length Ist-of- items) 2)
(mag (head lisat-of-items) ad (head (tail list-of-items)) "~

4 io.1 Wed Aug 19 03:40:08 1987

(CONeee-botwoon (all-but-last list-of-itoms))
(Neg "and "(car (lest list-of-itoas))

(define (comma.-bet.,een list-f--t...)
(wapcar 'pritnt-iten-witb-comas list-of-items)

(define (print-item-with-comma I tem)
(meg item

-ALi

stack.1 Wed Aug 19 03:40:26 1987

.............. *...................

PROGRAM: STACK
AUTHOR: Mork Thomas Maybury
DATE: November 17 1986 *

PURPOSE: To keep track of stack operations. *

ND: stack is considered to be a global variable

FUNCTION: initialise-stack

PURPOSE: To initialise a stack so that it can be used with my-push and *
my-pop routines. Note that unless you initialize a stack, you

; may get unwanted errors. For example, if you try to pop an
* uninitilized stack before pushing anything on it, you will

; got a lisp level error.
INPUT: A symbol representing a stack. *
OUTPUT: Nothing, but side effect is setting stack to nil.

(dofmacro initialise-stack (stack)

'(setq ,stack nil) ; set to nil

FUNCTION: my-push
PURPOSE: To push a given element onto a given stack.

If the stack is empty, make it the list of give item.
Otherwise add the element to the current stack by using cons.

INPUT: Item and stuck
OUTPUT: Rebinds global variable.

(defmacro my-push (item stack)

"(setq ,stack (cons ,item ,stack)()

FUNCTION: my-pop *
PURPOSE: To pop an item off a stack.
INPUT: stack *

OUTPUT: First element on list or nil if none.

...

(defmacro my-pop (stack)

'(progl
(car ,stack)
(setq ,stack (cdr ,stack))

(defmcro my-pop2 (stack) ; does sene thing somewhat less elegantly
9*99999999*99999999*9999
'(and

(setq ts (car ,stack))
(setq ,stack (cdr ,stack))
ts

..........................

FUNCTION: my-pop-result *
PURPOSE: To pop an item off a stack and return the result. *

INPUT: stuck

OUTPUT: Result of popping item from the list (is cdr of list).

.......... 0*

(d*fmacro my-pop-result (stack)

'(satq ,stack (cdr ,stack))

steck.1 Wed Aug 19 03:40:27 1987

...

FUNCTION: empty?
PURPOSE: To determine if a stack is empty or not.

. *** ***

(define (empty? stack)

(if (null stack) then t else nil)

FUNCTION: peak-stack *

PURPOSE: To peek at the top of the stack without altering its contents. *

........ *............

(define (peek-stack stack) (car stack))
:94*, 9*9*4*0*4 ***9*0***4 *69*4*49*09*4

p

I
tI

ave.1 Wed Aug 19 03:46:51 1987

MODULE: SAVE
* PURPOSE: To aid in debugging by appending or writing a function to file.I
- OWNER: copywrita Mark T. Maybury, July, 1987.

(define (save expr)
(proq (filoout response)
(msg N 'Outfile: ") ; get file for output
(setq fileout (read))
(s5g "Append (Y/N): ") ; append to it?
(setq response (read))
(cond
((or (eq response "Y) (eq response *y)) user uants to append
(nsag N "Appending item")
(setq fileout (outfile fileout 'a)))

(t (setq fileout (outfile fileout)) : else write over
(sag "Item stored" N))

(terpri fileout)
(terpri fileout)
(pp-form expr fileout 2) ; left margin set at 2
(close fileout)

*i $
_ _ _ _ _ _ __,.

.... _____,.-__,___....__--_______________i_-___-__

track.1 Wed Aug 19 03:40:36 1987

M MODULE: TRACK
; PURPOSE: To provide special tracing capabilities for the proorammar. I

* FUNCTION: TRACK

PURPOSE: 9

TRACK iS a built-in debugging and trace mechanism which #

allows the program developer and user to trace the functional #
* workings of the software. This offers more flexibility and #

greater ease of use (and more control) than the built-in 0
lisp TRACE function. The level of tracking con be altered #

with each run, dynamically allowing multiple levels of tracking#

If level-desired is greater than threshold required for a #
* message to print out, then print it. A blanking routine is #

also provided. 9

* FUTURE --) let message be a body or executable code. (macro or fexpr?) 9

(define (track level-desired threshold message &optional blanks spaces-before)

(cond

((>- level-desired threshold) ; above threshold?
(cond (spaces-before (space spares-before))); spaces? spaces-before
(print-list message) , print message
(cond (blanks (blank blanks)) ; blank blanks, if selected

(t (blank 1)) ; default to I

(define (track-blank level-desired threshold number-of-blanks)
(rend

(>= level-desired threshold) ; if above threshold
(blank number-of-blanks) blank number of lines

(define (track-space level-desired threshold number-of-spaces)

(cond

((>= level-desired threshold) ; if above threshold

(space number-of-spaces) ; space number of spaces

same as track but for functions to be evaluated

(define (trackf level-desired threshold function &optional blank. spaces-before)

(rond
(()- level-desired threshold) ; above threshold?
(rend (spaces-before (space spaces-before))); spaces? speces-before
(oval function) ; evaluate function

(rend (blanks (blank blanks)) blank blanks, if selected
(t (blank 1)) ; default to 1

FUNCTION: track-cpu I
PURPOSE: to collect run-time statistics for system efficiency evaluation.I

(define (track-cpu time)

(rend
((eq time 'start) (ptime)) ; begin tracking processor
((eq time 'finish) ; finish

(let- ((cpu-time (ptime))
(processor (first cpu-time))
(garbage (second cpu-time)))

(track -tracing- 3 '(PROCESSING TIME) 1)
(track -tracing* 3 '(CPU time used for processing: ,processor))

(track -tracing- 3 '(CPU time used for garbage Collection: ,garbage))

)_aa_ _ _ _ _ _

2 track.1 Wed Aug 19 03:40:37 1987

At

)I

SZCTION 4

KNOWLEDGE BASE INTERFACE

kbImterfsco.1 Sun Aug 30 15:03:43 1987

MODULE: KNOWLEDGE BASE INTERFACE
PURPOSE: To provide access to the frees based knowledge representation

where the neurophysiological and neuropsychological
* knowledge is stored.

OWNER: copywrite Mark T. Maybury, Kay, 1981.

(include -/dissert/KB/fraies.lp) frame knowledge representaticn formalism
(include "/disert/KB/construct kb.lsp) kb generation routines
linclude -/diisert/KB/fremo_eccss.1) frame accessing primitives

(include brain kb.lsp)(kb coLteining brain knowledge
(include disorer-kb.lsp) kb containing disorder knowledge

-Am-_

/.er/mpbil/mtm/dieert/KD/framee.lap Sun Aug 30 15:12:52 1987

MODULE: FRAME KNOWLEDGE REPRESENTATION FORMALISM
PURPOSE: To provide a knowledge representation framework.

OWNER: copywrite Mark T. Maybury, June, 1987.

FRAME PROCEDURES FROM PATRICK HENRY WINSTON'S BOOK, LISP. 12 OCT 85
....... *************** **************

;******************e4**************e*************

FGET retrieves information, given frame-slot-facet access path.

************* ************

(define (fget frame slot facet)
(cdr (&ssoc facet (cdr (assoc slot (cdr (get frame 'frame)))))))

FPUT places information, given frame-slot-facet access path. *

(define (fput frame slot facet value)

(let ((value-list (follow-path (list slot facet)

)fget-frame frame))))
(cond ((member value value-list) nil)

It (rplacd (last value-list) (list value))
value))))

MY-FPUT places information like FPUT, given frame-slot-facet access path.*

; The difference, however, is that if you attempt to put the a piece of *

; information into a slot and that information is already there then *

; MY-FPUT returns the value of that piece of information whereas FPUT

; returns NIL.

(define (my-fput frame slot facet value)

(lot ((value-list (follow-path (list slot facet)
(fget-frame frame))))

(cond (t (rplacd (last value-list) (list value))
value)))

FGET-FRAME gets existing frame structure or creates one if non-existent *

(define (fget-frame frame)
(cond ((get frame 'frame)) , Frame already made?

It (setf (get frame 'frame) (list frame)))) If not, make one.

FREMOVE remove- information, given frame-slot-facet access path.

(define (fremove frame slot facet value)

(lot ((value-list (follow-path (list slot fdcet)

;fget-fr me frame)))I
(cond ((member value value-list)

(delete value value-list)

t)

(t nil))))

EXTEND inspects first, using ASSOC, and if ASSOC fails, EXTEND extends

using RPLACD.

*defineaaataak*ea*5ai*******0*5555***5*5*505****aO*5 5 saas**sossasssa

(define (extend key a-list)

~ A

2 /uer/philmtmdissrt/m/fruaaIap Sun Aug 30 15:12:53 19$7

(cond ((0ssoc key (edr &-list)),
(t (cadr (rplacd (lost a-list) (list (list keyf)M Mo

FOLLOW-PATE uses EXTEND to push through frame structure.

........... *.........

(define (follow-path path *-list)
(cond ((null path) a-list)

(t (follow-path)cdr path) (extend (car path) s-list)))))

*~~...... osso.s *0* . ** *0

POET-V-D looks at VALUE facet of a given slot and then inteDEFAULT
facet if nothing is found in the VALUE facet.

...............

(define)fgot-v-d frae slot)
(cond ()fgot frane 'value))

))fget trame slot 'default))))

FOET-V-D-P causes sll procedures found in the IF-NEEDED facet to be

executed if neither VALUE nor DEFAULT facets help.

*...................................

(define (fget-v-d-p frame slot)
(cond ((fget frae slot 'value)) Try values first.

)(fgot frame slot 'default)) Then try defaults.
(t (mapcor .Combine results, if any.

*')lambda (demon) (funcall demon frame slot))
(fget frame slot 'if-needed))))

.............. *** *.........

ASK could be a very popular occupant of the IF-NEEDED facet of a slot.

.0*0. . .-0*

(define (ask frame slot)
(print '(Please supply a value for the

,slot slot in the
frame frame)) ;Start new line.

(terpri) ;Get user's answer.
(let ((response (read))) :Neturn list with answer if

(t nil))) ;RESPONSE is other than NIL.

POET-I uses FGBT-CLASS. a procedure that returns a list of all frames
that a given grams is linked to by an A-KIND-OP path, to give 0

values in frames related to given frame.

(define (fget-i frame slot)
)fgot-il)fget-classem frame) slot))

(define (fgot-il frames slot)
(cond ((null frames) nil) :Givo Up?

((fgat (car frames) slot 'value) ;Got something?
t (fget-il) cdr frames) slot)) Clirob tram

FPUT-P activate demons.

(define (fput-p frame slot facet value)
(cond)(fput frame slot facet value)

(mapcar *'(lambda (0) :Use procedures.
(aapcar #'(lambda (demon) (funcall demon frame slot))

(fget e slot 'if-added)))
(fget-classes frame))

VALUE)

/u8Or/pll/tm/dlesmort/Kf/coeatruct-kb.lEp Sun Aug 30 15:13:09 1987

.............. ...-................ *....

CONSTRUCT-FAME-KB takes a list of frames and uses MAZZ-PRAMK to make them
; frames when they are loaded in from a source file.

*...... **05OOOO~s *

(define (€onstruct-fraem-kb list-of-frames)
(mapcer 'make-frame list-of-fremes))

..* ***

N4AKE-FRANZ takes a particular FPNE and associates it with the name of
; the particular frame, FRAK-MANE, the first element in the list FRAE.

(define (make-freme frae)
(lot ((frame-name (car frame)))
(setf (get frame-name 'frame) frame)))

;(define (add-on linel line2)
(strip-first-and-last-character linel)
(concatenate linel line2))

;(define (strip-first-and-laet-cheracter 1)
(implode (reverse (cdr (reverse (cdr explode 1))))))

:(define (construct-frame-db)
(with-open-file (lobe-file 'lobelap :dsk)

* (prog ()
loop
(eetq current-line (readline file 'end-of-file))

(if (not (equal current-line 'end-of-file))
(cond ((equal current-line -) ((make-frame total-line)

(sotq total-line nil)))

(t (add-on currentline total-line))

(return ':end of file reached:))
(go loop)

I
S- -

/Uee5mW~i/mtmiisset/EUfraI ace 3 un Aug 30 15:13:23 1967

NODULE: FRAME ACCESSIWG
PURPOSE: To provide mnemonic primitives for from@ access.
OWNER, copywzite Mark T. Maybury, June, 1987.

frame data retrieval

;;family
(define (perente area) (fget area 'super-class 'velue))
(define (children area) (fget ares 'sub-class 'value))
(define (siblings ares)

(my-delete area (apply 'append (mapcar 'children (pa~ents are*)))))
;1define (children-type area) (fget are* 'sub-class-type 'value))

;: attributes
(define (importence area) (integer->lex tfi.rst (fget area 'importance 'value)()
(define (dda area)(flat area 'dda 'value))(distinguishing descriptive attribute
(define (dde2 area) (mapcar 'seclist (fget ares 'dde 'value)))
(define 1dda3 aea) (apor ':4c (fget area 'dde 'value)))
(define (secliat dde) (list (first dda((tail dda)() ; (a b c) -> (a (b c))
(define (frame-type frame) (car (fget frame 'type 'value)))
(define (damage-of-are4a re*) (integer-leGx (car (reverse* (fget ares 'damage 'value)))))
(define (domain, (car (fget 'expect-domain 'sub-class 'value)))
(define (getacore frame slot facet)

(car (reverse)fget frame slot facet))))

pragmatics
(define (rolevance frame) (flat frome 'relevance 'value))
(define (context frame))fget frame 'discourse-context 'value))

Frame data manipulation

s; ttributes
(define (mako-dsmoge area value))fput area 'damnage 'value value))

;;focus
(define (place-in-vista frame) (my-fput frame 'relevance 'value 'in-vista))
(define (implicit-vista frame) (iy-fput frame 'releance 'value 'implicit-vista))
(define (mark-pragmnatics ares value) (fput frame 'pragmatics 'value value))
(define (place-in-context area purpose) jfput area 'discourse-context 'value purpose))

FUNCTION: integer->lex
PURPOSE: to convert an integer to a lexical entry.

(define (integor-lIex nun)

(cond
((eq num 1) 'one)
((eq nun 2) 'two)
((eq nun 3) 'three)
((eq num 4) 'four)
((eq nun 5) 'five)
((eq nun 6) 'six)
((eq nun 7) 'seven)
((eq nun 8) 'eight)
((eq nun 9) 'nine)
((eq nun 10) 'ten)

j

SECTION s

TEXT MODULE

test.! Sun Aug 30 15:17:37 1987

NODULE: DISCOURSE SCHEMA

PURPOSE: To make discourse decisions on what to may next constrained
* by available knowledge (from global focus constraints), the
; discourse goal, and local focus constraints.
; To instantiate rhetorical predicates and send them to tactical

component.

OWNER: copywcite Mark T. Iaybury, June, 1947.
; .Header: t-At.l,v 1.1 47/08/25 01:11:59 ate Exp $

--\

FUNCTION: MAIN
PURPOSE: to begin GXNMY after initialisation by deteriming the

discourse goal which is characterised by what we are going to
; talk about (discourse focus) and how we are going to talk about

it (discourse structure).

LINGUISTIC
PRINCIPLES: This module exploits knowledge of common discourse strategies

; together with global and local focus constraints to generate
and then realise text for a provided discourse goal (e.g.

; define, explain, compare) and discourse focus (e.g. frame).

First a theme-scheme is generated, built up by sub-schema
and their corresponding rhetorical predicates. Next, a
vista of salient knowledge is selected from the knowledge
base, guided by the discourse topic. Then, globally
constrained by this knowledge vista, a pool of relevant
propositions is generated. GERMY then steps through the
theme-scheme, selecting propositions from the available pool
guided by a local focus model. Those are realised by a
tactical component which makes use of focus and context
to determine sentence structure and referring expressions,
and word choice (e.g. voice, ansphora, and articles).
The propositions are realised by a threefold process
including semantic interpretation, generation of relational
constituents, and building of a syntactic tree. The final
surface form is determined by morphological and orthographic
procedures. GENY does not give up (or crash) if she fails
at any one of these stages. Instead, she degrades gracefully
by attempting to say anything that she can within the
boundries of the global and local constraints.)

(define (main)

(trackf -tracing- 2 '(welcome)) issue welcome and directions
(load-dictionary) load domain dictionary
(load-kb) : load domain knowledge base
(trackf -tracing- 1 '(track-cpu 'start)) begin tracking cpu if requested
(let- ((theme-scheme (discourse-schene)) discourse schema

(topic (discourse-topic theme-scheme)) discourse topic
(discourse-structure (discourse theme-scheme topic))
(realization (mapcar 'translate discourse-structure))

(track -tracing* 2 '(DISCOURSE SCHEMA + FOCUS + GIVEN) 2)
(trackf -tracing- 2 '(pp-form ',discourse-structure) 2)

(track-blank *tracing* 1 3)
(track *tracing- 1 '(MESSAGE REALIZATION))
(trackf -tracing- 1 '(pp-form ',realization) 2)

(track-blank *tracing* 1 3)
(track -tracing* 1 '(SURFACE FORM))

(mag (N 2))
(mapcar 'surface-form realization)
(trackf *tracing* 1 '(trock-cpu 'finish)) ; finish tricking cpu if requested

FUNCTION: welcome
PURPOSE: to print out welcome and directions

(define (welcome)

(meg (N 3) "Welcome to the GERMY teat generation system for expert systems.")
(meg N "GERRY was designed to answer questions of the form:")

I ne

test.1 Sun Aug 30 15:17:38 1987

(ng (N 2) Whet is an X?")
(meg N Why did you diagnose T? or Why does Y have a problem?")
(Sag N "-- Whet is the difference between I and Y?')
(meg (H 2) 'where • end T are entities within the provided knowledge bae.')
(mag (N 2) "These three types of questions ere indicated by the keywords:")
(meg V 'DEFINE, EXPLAIN, and CONPARE, respectively.")

FUNCTION: load-kb
PURPOSE: to include a domain knowledge base.

(define (load-kb)

(ag (N 2) "What is the domain of discourse?
(let ((file-with-kb (rod)))

(cond

((probef file-with-kb) file exists?
(load file-with-kb))

(t (nag N "-* No file " file-with-kb w found." N))

FUNCTION: load-dictionary
PURPOSE: To load in a now dictionary, erasing the old one.

(define (load-dictionary)

(msg (N 2) "Please enter the domain dictionary file nome?

(let ((file-with-dictionary (read)))

(cond
((probeR file-with-dictionary) file exists?
(erase-dictionary) defined in makedictionary

(load file-vith-dictionary))

(t (nag N .**. No file " file-with-dictionary found." N))

FUNCTION: discourse-scheme
PURPOSE: to determine thematic-scheme or text sketch for answer.

(define (discourse-scheme)

(ng (N 2) "Do you wish DEFINE, EXPLAIN, or COMPARE?
(get-a-discourse-goal)

FUNCTION: get-s-discourse-goal
PURPOSE: to query the user for a frame name in the current KS.

(define (get-a-discourse-gol)

(let ((response (reed)))

(cond

((fget-frame response) response)
it (nsg (N 2) "GENNY cannot " response

(mag N "Please type another roponse (DEFINE/EXPLAIN/COMPARE): "I
(get-a-discourse-goal)

FUNCTION: discourse-topic
PURPOSE: to determine focus (foci, if comparison) of attention of text.

(define (discourse-topic theme-scheme)

(cond

((eq theme-scheme 'compare)

(msg N -What do you wish to compare? ")
(let ((entity (get-s-frame-name)))

(Mag N "Whet would you like to compare it to?)

(list entity (get-a-frame-nome))

-...

3 tent.i Sun Aug 30 15:17:39 1907

It
(meg IN 2) "What do you wish to know about7
Mait fget-a- rame-name))

FUNCTION: get-a-frame-name
P031053: to query th, user for a frame name in the current EDN.

(define (get-a-frau.-naas)

(let ((response, (read)))
(cond
((fget-frame response) response)
It (sg IS 2) "GENNY has no knowledge about -response."

(meg N *llesse type another reponse: "
(get-a-f rame-name)

FUNCTION: discourse
PURPOSE: To generate a specific text structure given a TS (a text

structure or a theme-scheme) along with an item.

(define (discourse scheme item)

(let- ((global-focus item)
(ton (thematic-schese scheme global-focus))
(kvista)aelect-knowledge-vista global-focus)) ;vista into relevant knowledge

)clear-relevant-propositions -predicata-typess)

(track-blank *tracing* 1 1)
(track -tracing- 1 '(SELECT KNOWLEDGE VISTA --) kvista) 2)

(track *tracing- 1 '(GENERATE RELEVANT PROPOSITION POOL) 2)

(generate-relevaat-propositions generate relevant propositions
kvista
-predicate-types-
schese)

(track *tracing* I '(GENERATE DISCOURSE PLAN:))
)trackf *tracing* 1 '(pp-form '.ts) 2)

(track -tracing- I '(GLOBAL FOCUS (DISCOURSE TOPIC) -- > global-focus) 2)

)generste-discourse generate discourse propositions
to discourse plan
nil 0o past foci
global-focus current focus - global focus(i)
nil no knowledge of potential future foci
nil) no0 current context

;(defmacro makelistifnot (1) '(cond ((listp 1)(1) (t (list j)))

FUNCTioN: clest-relevant-propositions
PURPOSE: to clear the instantiated propositions from each predicats'o

property list.I

(define)clear-relevant-propositiOnS predicates)

(cond
((null predicates))
It (putprop (head predicates) nil 'propositions) clear propositions

(clear-relevant-propositions (tail predicates)) tail recurs@

FUNCTION: propositions
PURPOSE: to return the instantiated propositions in the pool of

knowledge for a given rhetorical predicate.

4 text.1 Sun Aug 30 15:17:39 1937

(define (propositions predicate) (get predicate 'propositions))

*FUNCTION: genss~ate-discourse
*PURPOSE: to take a plan of discourse predicates along with focus

*information and recursively generate a list of rhetorical
*propositions. Local focus constraints are used to constrain
*choice at any particular juncture in the thematic-gcheme and
*global focus constraints limit the propositions which are
*successfull.y instantiated or matched against the vista in the
*knowledge base.

(define (generste-discourse theaaticshm fc fcnet

(cond
((null themaitic-scheme) nil) nothing more to talk about

(let- ((next-illocutionary-action+focus choose next thinq to talk about
(select-proposition

proposition (first thematic-schese))
pf cf ff)(

)next-illocutionary-action (heed next-illocutionary-action~focus()
(next-foci (tail next-illocutionsry-action.focus))
(OF (first next-foci)) default foci of next predicate
WA (second next-foci)) alternate foci of next predicate

* (track *tracing* 2 '(NEXT DISCOURSE PROPOSITION:)
* (trackf -tracing- 2 (pp-form ' *st-illocutiossary-action) 2)
* (track -tracing- 2 '(CURRENT CONTEXT (GIVEN):))
* (trackf -tracing- 2)(pp-form ',context) 2)

(append
(cond ((null next-illocutionary-action(nil) if next proposition then

It (list (list next-illocutionary-action save proposition
(list pf OF A?) save focus information
context)))) return context

gseate-di scourse
(tail thematic-schemea) choose rst to say
cond

((tail cf) ;((length of) l(;multiple foci?
(append (list DF) last uttered

(list (tail cf)) not yet utt
pf)(other past

((member (car DY) ff(DF in ff? (multiple focus?)
(append (list DY) past - push ff on pf

(list (delete (car DY) ff((
pf))

It (append (list Dli pt))) past - push OF on pf
(cond ((tail cf) cf)

It DY))
AP future foci
(delete-duplicates (append OF A? contest)) save current context

FUNCTION: generate-relevent-propositions
*PURPOSE: to generate a set of relevant propositions from the pro-ided

*knowledge vista.

(define (generate-relevant-propositions kvista predicate-tl'pes srep--c

(cond
((null predicate-types)) stop
It
(putprop (head predicate-types) save relevant

(match-predicate (head predicate-types) kvista speach-act): propositions
'propositions)

(generate-relevant-propositions
kvista (tail predicate-types) speech-act) ;tail recurs*

toZt.1 Sun Aug 30 15:1:48 1907

FUNCTION: match-predicate
PURPOSE: to match a predicate against the vista in the knowledge base.

(define (match-predicate type kvista speech-act)

(cond
((null kvista) nil) no more knowledge
(t
(lot ((next-prod (instantiate-predicate try to make next prod

type
(head kvista)
speech-act)))

(append else construct
(rend ((null next-pred) nil) first item in kvista

(t (list next-prd))) , if any
(match-predicate type (tail kvista) speech-act)) rest items in kvista

FUNCTION: thematic-scheme I
PURPOSE: to return a sketch structure of the text provided with the themel
METHOD: uses discourse primitives (such as attributive, constituent,)

* which provide a framework for the given global discourse goal
* (eg define, explain). Note the global discourse goal is a type
* of speech act (ref Searle). A speech acts planning module

could be added here a la Paul Cohen.

(define (thematic-scheme theme topic)

(track-blank -tracing- 1 3)
(track -tracing- I '(TEXT SKETCH:) 2)
(cond
((eq theme 'define)
(append
(sub-schema 'introduction topic)
(sub-schema ,d~scription topic)
(sub-schema 'example topic)

((eq theme 'explain)
(append
(sub-schema 'reason topic)
(sub-schema 'evidence topic)

((e* theme 'compare)
(append
(sub-schema 'introduction topic)
(sub-schema 'introduction topic)
(sub-schema 'comparison topic)
(sub-schema 'conclusion topic)

(t (nsg N "Sorry, but GENNY has no knowledge of the ' theme ' theme-scheme" N))

FUNCTION: sub-schema
PURPOSE: to return the sketch of a sub-discourse given a

perlocutionary-act.

(define (sub-schema perlocutionsry-act topic)

(trackf -tracing- I '(pp-form ',psrlocutionary-actl 1)
(cond
((eq perlocutionary-act 'lintroduction)
'(definition attributive)

((eq perlocutionary-act 'description)
(append '(constituent)

(option
(predicate

0
'attributive topic)

'(definition)

((eq perlocutionary-act 'example) '(illustration))
(eq perlocutionary-act 'reason) '(cause-effect))
((eq perlocutionary-act 'evidence)
(option

S eat.1 Sun aUg 30 15:17:49 1987

(predicato 'attributive topic)
'(definition)

((eq porlocutionary-act 'comparison) ,(compare-contrast))
((eq porlocutionary-act 'conclusion) ,(inference))

FUNCTION: option
PURPOSE: to allow a choice between a first or second item. If none ->nil[

(define (option first second)

(cond
((null first) second) ; if first empty, return second
(t first) *lse return the first

FUNCTION: predicate-
PURPOSS: to allow for multiple repetition of a predicate

(define (predicate- predicate topic)

(let ((childa (length (children (first topic)))))

(cond
((serop childs) nil) no children? -> stop
(t (repeat predicate childs)) else repeat the predicate

for each child

FUNCTION: repeat
PURPOSS: to repeat a given symbol n-times by ingenious use of array

function for duplication (see Wilensky, LlSPcraft, 1984 for
descriptions of array functions).

--

(define (repeat symbol n-times)

(let ((temp-array (newsym 'array))) newaym for temporay local variable
(oval '(array ,temp-array t n-times)) define local array

(fillarray temp-array (list symbol)) fill array with symbol
(listarray temp-array n-times) list array out to nth element

t)

SECTION 6

RHETORICAL PREDICATE SEMANTICS

I!

predlcates.1 Sun Aug 30 15:06:29 1987

MODULE: PREDICATE SEMANTICS
PURPOSE: To associate the individual rhetorical predicates with the

frame based knowledge representation.
NOTE: While thase semantics are domain-independent, easily ported

to any domain &epresented in a frame network, they are
knowledge representation specific. Porting the generator

to another KR scheme (logic, for example) would requirs a new
semantic link into that representation. Hence, this module

would be replaced.
OWNER: copywrite Mark T. Naybury, June, 1987.

LINGUISTIC
MOTIVATION: It seems that discourse can be elegantly described in

terms of rhetorical acts or predicates which serve as
text-type independent building blocks of larger discourse.

; This stems from work by early grammarians (c.f. Williams,
1893), more recently investigated by Grimes (1975), with
related speech-act work by Searle (1969, 1975). McKeown's

* (1985) work, a major contribution to text structure
* definition, motivates these predicates, although the

discourse goals in GINSy include explanations in addition
to definitions and comparisons. More importantly, the
predicates presented below -- definition, attributive,
constituent, evidence, illustration, cause-effect,
compare-contrast, and inference -- are interfaced to a
frame knowledge formalism, as defined by the following
predicate semantics.

RHETORICAL PREDICATE + SEMANTICS + KNOWLEDGE BASE) PROPOSITION

FUNCTION: instantiate-predicate
PURPOSE: to return a proposition which is an instantiation of a

rhetorical predicate with knowledge from the frame KB.

(define (instantiate-prtdicate type froe speech-act)

(cond
((atom frame) if single foci
(cord
((and (frame-type frame) does the from*

(head (parents frame))) exist/not root node?

PREDICATE DOCUMENTATION GUIDE:

PREDICATE-NAME
semantics

instantiated example
reolisationl
realization2

(cons OUTPUT
type ; predicate-type

(cond + predicate

DEFINITION PREDICATE

[definition type/entity type dda]
(definition ((region brain)) ((region)) ((location (skull)))]

The brain region is a region located in the skull.

There is a region located in the skull called the brain region.

((eq type 'definition)

(list
(cond
((or (act? frame) (result? frame))

'((,(frame-type frame) ,frame)))
(t '((,frame))))

'((,(frame-type frame)))

(dda2 frame)

)I
ATTRIBUTIVE PREDICATE

(attributive type/entity (attr value)-]
[attributive ((region brain)) ((value importance indef I))]

The brain region has an importance value of 1.

I An importance of 1 is attributed to the brain region.

((eq type 'attributive)

2 predicate.1 Sun Aug 30 15:06:30 1987

(list
((,(frame-type frame) frame))
(attributes frame speech-act)

CONSTITUENT PREDICATE

;constituent entity sub-class-type sub-class-no subclasses]
(constituent ((brain)) ((hemisphere two none)) nil ((1-hem region) (r-hem region)

(I

The brain has two hemispheres: a l-ho region and a r-hm region.

There are two hem in the brain: a 1-hem region end a r-hem region.

((eq type 'constituent)

(list
'((,frame))

(cond

((children frame) if there are children

(list (list
(frame-type (first (children frame)))
(integer-)lex (length (children frame))) 'none)))

(t nil))

nil no instrument, function,

(mapcar 'type+frame (children frame)) or location

:,condition

EVIDENCE PREDICATE

[evidence (type entity) '((damage)) '((location (super-type super-class)))]

[evidence ((test language)) ((damage)) ((location (lobe lfrontal) I

The language (test) indicates the damage in
the Ifrontal lobe. (Language indicates damage in lfrontal?)

The lfrontal lobe damage is indicated by the language test.

((eq type 'evidence)
(list
(rend
((or (act? frame) (result? frame))

'((,(frame-type frame) .frame)))

(t '((,frame))))
'((damage))
(cond

((or (act? (first (parents frame)))
(result? (first (parents frame))))

(list (list

'instrument

(list (frame-type (first (parents frame)))

(first (parents frame)))))

(t

(list (list
'location
(list (frame-type (first (parents frame)))

(first (parents frame)))))

ILLUSTRATION PREDICATE
(illustration type/entity type dde]

(illustration ((region left-hnmiphere)) ((function)feature-recognizer))) brain I

The 1-hem region, for example, functions as a feature-reconizer for the brain.

The !-hem region, for ex, has the feature-recognizer function in the brain

((eq type 'illustration)

(list
,((,(frame-type frame) frame))
,((,(frame-type frame)))
(dda2 frame)

CAUSE-EFFECT PREDICATE

(cause-effect entity '((damage)) sub-class '((damage))]

(cause-effect ((brain reg)) '((damage)) nil ((1-hem rag) (r-hem rag)) '((damage))

The brain region has (no) damage because the 1-hem region and the r-hem region ha

ve (no) damage.

The amnesic disorder is manifest because the apathetic observation indicates damn
ge.

((eq type 'cause-effect)

(liat
'((,(frame-type frame) frame))

a-,

.*1

3 predicaten.1 Sun Aug 30 15:06:30 l 87

(cond

((result? frame) 1((manifest))) is frame a result (i.e. symptom/disorder)
((act? frame) '((made))) ; is frame an act (i.e. observation)
(t '((damaged nil none)))) : else it is an object

nil , no instrument, function, location
(ma pcar 'type+frame (children frame))

'((damage))

(Vistp frame) make sure its a list
(cond

((and : if multiple foci frame

(and (frame-type (first frame)) ihead (parents (first frame)))) : fl
(and (frame-type (second frame)) (head (parents (second frame)((f2

(cons OUTPUT --
type predicate-type
(cond ; + predicate

COMPARE-CONTRAST PREDICATE
[compare-contrast (entityl entity2) (comparison val)']
[compare-contrast ((1-hem) (r-hem)) ((dda similar) (type different))]

The 1-hem and the r-hem have a similar type and a different dda.

There is a similar type and a different dda for the 1-hem and the r-hem.

((eq type 'compare-contrast)
(list
(list
(list (first frame)(

(list (second frame)))
(comp-cont (first frame) (second frame)))

INFERENCE PREDICATE

[inference framel frame2 conclusion]
(inference ((brain) (language)) ((entity different none))]
The brain and language, therefore, are different entities.
Hence, the brain is different from language.

((eq type 'inference)
(list
(list

(list (frame-type (first frame)) (first frame))
(list (frame-type (second frame)) (second frame)))

'((entity
,(inference (first frame) (second frame)) none)))

(t nil) if frame doesn't exist -> nil

listp

FUNCTION: mark-as-used
PURPOSE: to mark one or a number of frames as used for a particular

rhetorical purpose. This device acts as a discourse context
* which records past utterances. This can aid in resolving
; focus selection when such a choice is ambiguous.

THEORETICAL

MOTIVATION People don't normally repeat themselves in discourse unless
they wish to achieve a peculiar effect (eg emphasis,

conversational implicature, etc). Thus, record past usages

of a particular knowledge chunk so that is not repeated

later in the discourse.

MECHANISM: The frame slot called "discourse-contsxt" is marked with the
symbol representing the rhetorical predicate type

(eg illustrative or constituent). When the pool of knowledge

is being constructed, this field is tested and no proposition
is generated for a particular rhetorical predicate if that
utterance has already occured in the discourse,

(define (mark-as-used frames predicate)

(cond
((null frames))

4 predicates.1 Sun Aug 30 15:06:31 1987

((atom frames) (place-in-context frames predicate)) if one, in context
(t (place-in-context (head frames) predicate) else first in context

(mark-as-used (tail frames) predicate)) and rest

FUNCTION: typeofrase
PURPOSE: to return a list of the frame name together with its type.

(define (type+frame frame)

(list (frame-type frame) frame))

FUNCTION: result?

PURPOSE: to determine if a given frame is a resultant of something.

(define (result? frame)

(cond ((member (frame-type frame) '(symptom disorder fault attributell))

FUNCTION: act?

PURPOSE: to determine is the provided frame is an act.

(define (act? frame)

(cond ((member (frame-type frame) '(observation))))

FUNCTION: attributes
PURPOSE: to return the attributes of the given frame by examining KB.

(define (attributes frame speech-act)

(let ((import (importance frame))

(damage (damage-of-area frame))
(type (frame-type frame)))

(cond
((eq speech-act 'define)
(cond ((null import) nil)

(t (list (list 'value 'importance 'indef import 'relative)))))

((eq type 'test)

(cond ((null damage) nil)
(t (list (list 'result nil 'indef damage)))))

(for (eq type 'symptom) (eq type 'observation))

(cond ((null damage) nil)
(t (list (list 'value 'likelihood 'indef damage))))

((eq speech-act 'explain)
(cond ((null damage) nil)

(t (list (list 'value 'damage 'indef damage)))))

((eq speech-act 'compare)
(cond ((and (null import) (null damage)) nil)

((null import) (list (list 'value 'damage 'indef damage)))
((null damage) (list (list 'value 'importance 'indef import 'relative)))

(t (list (list 'value 'importance 'indef import 'relative)

(list 'value 'damage 'indaf damage)))

may actually want this form which returns,
for ex, ((importance 1) (damage nil)) versus ((importance 1))

so can say "The brain has importance of 1 and damage of unknoin.'
"The brain has a 0.8 importance and an unknown damage."

(list

(list 'importance import)

(list 'damage damage)

(list 'sub-class childs)
-)

FUNCTION: inference
PURPOSE: to make inference on two provided frames.

(define (inference fl f2)

Al.,

predicates.1 Sun Aug 30 15:06:56 1967

(cond
((oq fl f2) 'equal)

((eq (frame-type fl) (frame-type f2)) 'similar)

((eq (parents fl) (parents f2)1 'similar)
((oq (dda fl) (dda f2)) 'similar)

(t 'different)

FUNCTION: comp-cont
PURPOSE: to compare or contrast to given frames.
MItTHOD: Check equality of various slot values.

Check hierarchical distance.
Check similarity of parents, children, siblings.

(define (comp-cont P1 P2)

(list
(list 'name (cond ((oq fl f2) 'equal) (t 'different)))

(list 'class (cond ((sq (parents fl) (parents f2)) 'similar) (t 'different)))
(list 'sub-class (cond ((eq (children fl) (children f2)) 'similar) (t 'different)))
(list 'type (cond ((eq (frame-type fl) (frame-type fZ)('similar) (t 'different)))

(list 'dda (cond ((eq (dda fl) (dde f2)) 'similar) (t 'different)))
(list 'importance (cond ((eq (importance fl) (importance f2)) 'similar) (t 'different))

SUCTION T

FOCUS AND ANAPHOR ALGORITHMS

-Now

implicit focus

explicit focus

Initialise
ts (theme scheme) = theme-scheme
cf (current focus) = discourse goal
pf (past focus) = nil
ff (future focus) = nil

LET fpl (focus preference list) = ff + cf + pf

proposition not yet uttered
(instantiated using fpl)

mark proposition and knowledge as uttered

DF = default focus of next predicate
AF= alternative foci of predicate

Save proposition, focus, end context

LET pf (first DF) + (tail DF) + pf if multiple cf
DF + (ff - DF) + pf if multiple ff
DF + pf otherwise

cf= (tail cf) if multiple cf else cf DF
ff AF

focs.1 Sun Aug 30 15:02:13 1987

MODULE: FOCUS

PURPOSE: To determine and utiliss both global and local focus

constraints to enhance relevancy of knowledge and

connectivity of discourse.
OWNER: copywrite Mark T. Haybury. June, 1997.

SReader: focus.1,v 1.1 S7/0/25 01:09:5S9 Utm xp $

..\

GLOBAL FOCUS THEORY

Motivated by Barbara Gross's theory of global focus, declare a knowledge

vista which encompases the given frame, its parent, and children. A
more sophisticated mechanism (beyond the scope of this dissertation)
could incorporate user modelling to select relevant knowledge with
regard to the level of sophistication of the audience. Furthemore, a
discourse model could supress or encourage certain peicss of information
with regard to previously generated text.

The use of the diction "knowledge vista" illustrates the connection with
the TEL approach to knowledge representation. In this paradigm,
knowledge is most perpicuous when viewed from some relevant vista.
Here, knowledge in global focus is the relevant vista.

FUNCTION: select-knowledge-vista
PURPOSE: to select a vista within the knowledge base which reflects the

knowledge relevant to the global-focus(i).
METHOD: utilize the frame hierarchy to place the superordinate and

subordinate classes of the frames into the knowledge vista.

Also, siblings of frames are placed in implicit vista or focus.

LINGUISTIC
THEORY: Humans place not only individual entities but also multiple

* entities in focus simultaneously. This is the case, for
* example, when conversants discuss two items in parallel, as in

comparison.

(define (select-knowledge-vista frames)

(let
((frames-vista ; frames vista consists of

(append
frames ; frames in focus
(apply 'append (mapoer 'children frames)); their children
(apply 'append (sepcar 'parents frames)) ; their parents

(mapcar 'place-in-vista frames-vista) mark knowledge vista
(mapcar 'implicit-vista

(apply 'append (mapcar 'siblings frames))) mark implicit knowledge vista
(could mark two levels sway)

(cond
((listp frames) (cons frames frames-vista); multiple global foci? add to k,'iot.

(t frames-vista) ; return kvista

FUNCTION: in-vista?
PURPOSE: to determine if a given frame is in global focus (in K vista). i

(define (in-vista? frame)

(cond ((eq (relevance frame) 'in-vista))))

FUNCTION: implicit-vista?

PURPOSE: to determine if a given frame is implicitly in focus.

(define (implicit-vista? frame)

2 fecue.1 Sun Aug 30 15:02:13 1987

(cond ((eq (relevance frame) 'implicit-vista))))

.. m

LOCAL FOCUS THO!RY

PF -- past foci list
CF .- current focus
rFF - potential future foci list

Attentional shift algorithm (motivated by Candace Sidner's work).

if choice between PF or CF, prefer CF (to continue present topic)

if choice between CF or FF, prefer rF (to introduce now topics)

INSIGHT
if possible, stick to topic unless future role is illustration, then rF
otherwise, allow digression from topic for one level,

then return to topic.

FUNCTION: select-proposition
PURPOSE: to select a proposition based on local focus constraints. I
NETHOD: Sidner's algorithm modified for generation purposes. I

Furthermore, the proposition that is used is marked in the I
as a discourse context so it won't be repeated. I

(define (select-proposition choices PF CF F5)

(let* ((focus-preference (local-focus-preference PF CF FF))
(selection+focus (pick-proposition choices choices focus-preference)))

(track *tracing- 1 '(LOCAL FOCUS PREFERENCE -- ,focus-preference()

(track *tracing- 1 '(PREDICATE SELECTED)->)
(trackf *tracing- I '(pp-form ',(head selection+focus)) 2)

(mark-as-used
(first (head (tail selection+focus))) mark topic used and

(first (head selection+focus))) for what discourse purpose

selection+focus return selected rp + focus

FUNCTION: pick-proposition

PURPOSE: To choose a rhetorical proposition from among several choices
which will have the same focus as the desired focus and is new

information (is has not been uttered already).
METHOD: Try to match all the rhetorical propositions with the first

item in the focus preference list. Take the first rp that
succeeds. If none work, then rocurso down the focus-preference
list until success, otherwise fail.

An rp succeeds if the next focus prefored is both within the

realm of that predicate as well as if that predicate has not
been used before for that topic (is only choose to say

something if you haven't already said it.)

LINGUISTIC PRINCIPLE:
Select what to say next based (in order of importance) on:

4-- what you want to say

-- what you know

-- what you have already said

(define (pick-proposition all-rps rps focus-preference)

(cond

((null focus-preference) nil) no more focus possibilities
((null rps) no more rhetorical prods

(pick-proposition try next potential focus
all-rps on all the predicates
all-rps
(tail focus-preference))

((and

(not (uttered (head rps) (head focus-preference))) ; prod not uttered on topic

(member (head focus-preference) next potential focus
(default-foci (head rpa))) member of next prod default foci?

-. 2

3 focms.1 Sun Aug 30 15:02:14 1987

(list (head rps) return rp +
(list (heed focus-preference)) (selected focus

(alternate-foci (head rps))) + FF)

((and

(not (uttered (haad rps) (head focus-preference))) ; p:ed not uttered on topic
(member (head focus-preference) : next potential focus

(alternate-foci (head rps))) member of next prod alt foci?

(list (head rps) return rp +
(list (head focus-preference)} (selected focus + 7F)

(default-foci (hoed rps)))

(t (pick-proposition otherwise check rest
all-rps of prods for being in
(tail rps) focus pref list

focus-preference)

FUNCTION: uttered

PURPOSE: to determine if the rp ham alrealdy been uttered on the given
topic yet by testing context.

(define (uttered rp topic)

(cond ((member (first rp) (context topic)))) : prod type not uttered yet

for this topic

FUNCTION: any-member
PURPOSE: to determine if any of the items in a list are members of the

membership list.

(define (any-member items membership)

(cond

((null membership) nil)
((member (first items) membership))
(t (any-member (tail items) membership))

FUNCTION: local-focus-preferenca
PURPOSE: to determine a focus preference list based on the past foci,

* the current focus, and the possible future foci.
LINGUISTIC

MOTIVATION: Apparently people focus on entities just introduced, or, as

* in the case of multiple foci, on the related entities in turn.

(define (local-focus-prefecence PF CF F?)

(delete-duplicates throw away duplicates (just extra work)
(cond if
((tail CF) multiple items in CF (i.e. multiple foci)
(append join lists in preference
CF

FF the FF of current utterance
(apply 'append PF) past foci joined together

(t

(append join lists in preference order:

PP the FF of current utterance
CF CF list

(apply 'append PF) past foci joined together

FUNCTION: default-foci and alternate-foci I :
PURPOSE: to return the default-foci (usually translates to agent) or the I

; alternate-foci (usually translates to patient) of the predicate.1

(define (default-foci rp) (first (foci rp))
(define (alternate-foci rp) (second (foci rp)

4 focum.1 Sun Aug 30 15:02:14 1987

FUNCTION: foci
FU Post: to return the potenOtial foci of a h gie htoricald prdca.Th scific location of focus is crhetorical depenet
OUTPUT,: current-foci >(potential-foci>
LINGUISTIC
FNINCIPLZ: A perlocutionary act generally has a default foci as wall as

alternative foci. This will be based on the type of act.

(define (foci rp)

(let ((type (first rp)))
(nd
((7member type '(attributive))
(list
(::pcsrt'cadr (secondirp))) foci from agent Cir

((abar type 'definition evidence))
cnd

((tail (first (second rp(((is this an act or result?
(list
(apcar 'cadr (second rp)(foci from agent CF
(mapcar 'car (third rp((((foci from patient Fr

(list
(mapcar 'car (second rp((foci from agent CF
(mspcar 'car (third rp((((foci from patient T

((member type '(inference))
(list
(mapcar 'cadr (second rp((foci from agent CF
(mapcar 'car (third rp(((foci from patient FT

((member type '(constituent)
(list
(eepcor 'car (second rp((foci froms agent C?
(append
(mapcar 'car (third rp((foci from patient FT
(mepcar 'cadr (fifth rp((((foci from beneficiary FT

((member type '(compare-contrast((
(list
(mapcar 'car (second rp((foci frem agent CF
(mapcar 'car (third rp(((foci from patient FF

((member type '(illustration))
(list
(mapcsr 'cadr (second rpfl foci from agent CT
(mapcor 'car (third rp(((foci from patient FT

((member type '(cause-effect))
(list
(mopcar 'cadr (second rp((foci from agentl CT
(appen~d
(saear 'cadr (fifth rp((foci from agentl F
(mapcar 'car (third rp((foci from pationtl Pr
(mopcar 'car (sixth rp((((foci from patient2 FT

(define (aef lyst)
(cond
((null (second lyst)) (first lyst)) if no second element, then first
(t (second lyst)) else return the second eeent

amaphera.1 Sun Aug 30 15:05:05 19$7

NODULE:: ANAPHORA
: URPOSE: To perform pronostnelisation when required by focus mechanism

for discourse fluidity.
OWNER: copywrite Mark T. Maybury, June, 1987.

FUNCTION: use-anaphora?
PURPOSE: to decide based on the past focus of attention and the current

focus ef attention whether or not to uee anaphora.
LINGUISTIC
PRINZPLE: If you have just spoken about soething (focus on it) and you

are still speaking about it in the next utterance, you are
allowed to use refering devices like anaphora.

(define-(use-enaphors?_agent focus)

(cond
((entity? (second agent)) :head noun entity?
(cond then try to pronom
((forefronted? (second agent) focus) t) fore? ronted? ->prone.

((forefro-ted? (first agent) focus) t) : fore? ronted7 - prone.
(t nil) else focus has shifted,

don't pronominalize
else test noun modifier

((forefronted? (first agent) focus) t) forofronted? -> prone.
(t nil) else focus has shifted,

don't pronominalisa

FUNCTION: forefronted?
PURPOSE: to decide if the provided entity is at the forefront of the

reader's mind at this point in the discourse.
LINGUISTIC
PRINCIPLE: Recancy of uttering en entity, as well as saliency, places an

item at the forefront of readers mind.
* Future: Animacy could affect attention reader has given to

previous entities (c.f. Fillmore, 1977).

(define (forefronted? dta focus)

(let ((P7 (first focus)))
cond
((and (member dte (head P7)) dte focused in previous utterance?

(entity? dte() dte an entity?
t) -> item is forefronted

(t nil) :else not

FUNCTION: entity?

PURPOSE: to return t if the item is a KN entity, nil otherwise.

(define (entity? item) (cond ((frame-type item))))

FUNCTION: anaphorizeI
PURPOSE: to pronominalize a noun Phrase in the subject or direct object.)

(define (anaphorise syntax-tras location) need focused item olso?7

(cond
((eq location 'subject)
(pronominalise-subject syntax-tree))

((eq location 'object)
(pronominalise-object syntax-tree))

(define (pronomintalise-subject tree)

(cond

((null tree) nil)

L- do

2 nnaphorn.l Sun Aug 30 15:05:06 1987

((eq (first (head tree)) 'np)
(cone

(pronom (tell (heed tree)))
(tell tree))

(t (cons (head tree)
(pronominalixe-subject tree)

FUNCTION: pronom
PURPOSE: returns proper pronoun given word features

(dictionary 'pronoun)

-> (he (pronoun pors sIng3p subj p
3
))

(dictionary 'determiner)

* -> (this qdeterminer count sing3p indefart notof noneg nonum))I

(define (pronom features) features -= (proper-noun sing3p mele)

(cond

((eq (first features) 'proper-noun) is it a personal noun?

(let ((pronouns (dictionary 'pronoun))) get all pronouns

(select-pronoun m hatch
(list 'pronoun 'per. (second features) syntax of proper noun

'subj 'p3 (third features))

(mapcar 'look-up pronouns)) entries of pronouns

It

(let ((pronouns (dictionary 'pronoun)))

(select-pronoun match
(list 'pronoun 'peru (third features) syntax of noun

'subj 'p3 (fourth features))
(mapcar 'look-up pronouns)) ; entries of pronouns

FUNCTION: select-pronoun
PURPOSE: to find a lex entry which matches the provided syntax features.

(define (select-pronoun syntax entries)

(cond

((null entries) nil)
((match-syntax syntax (tail (head entries))) ; if syntax matches next entry

(head entries) take it (first match)

It (select-pronoun syntax (tail entries))) else recurse on tail

(define (match-syntax syntax s-list)

(cond
I(null a-list) nil)

((my-unify syntax (syntax (head a-list))) t)
(t (match-syntax syntax (tail a-list)))

9L

)A

. s_ fi. - - ==ms ¢,. =a i i~ b--- .-.- i= -di ii

SUCTION 8

TRANSLATE MODULE

i,:

...... ,,,,Mm , n- dl L--,, ,--,, ,-- d !/ nn I -V

traslate,.1 Sun Aug 30 15:08:20 1987

MODULE: TRANSLATE
PURPOSE: To translate a rhetorical predicate into a case structure which

is transformed into a syntax tree by unifying with OPSO
* + features

OWNER: copywrite Mark T. Maybury, June, 1967.

REPRESENTATION:
Predicate -> Focus -) Case -> Relations -, GPSG -) Orthographic

FUNCTIONAL ANALYSIS:

Discourse -> Pragmatic -> Semantic - Relational -, Syntactic -> Suriace

LINGUISTIC

PRINCIPLES: The following code implements the translation of the
message formalism -- rhetorical predicates -- onto surface

* form. This mapping is motivated by recent insights in

discourse analysis (c.f. Perlmutter, 1900 and Fillmore,
1977) which suggest the need for a distinct level of
grammatical representation in terms of relational
constituents (e.g. subject, object, predicate). This theory
is supported by the success of interpreters exploiting
relational knowledge (e.g. GUS (Dobrow, 1977)) and the
insufficiency of some tactical generators (e.g. Mckeown,
1985) which do not take sufficient account of relational

ideas. With this in mind, GENNY first semantically
interprets a rhetorical predicate into a case formalism
(c.f. Fillmore, 1977, Sparck-Jones and Boguraev, 1967),1
the builds relational constituents (Perlmutter, 1980), and I
finally constructs a syntax tree with GPSG (Gazdar, 1982). 1
Trees are linearized, and and final utterances are produced
by morphological and orthographic routines.

--\

FUNCTION: translate
PURPOSE: to decide on syntactic, semantic, and pragmatic function.

(define (translate rptfocus+context) ; rp =- rhetorical-predicat*
----------------------------------- ; focus list = PF CF FF
(let ((rp (first rp+focus+context)) ; context - given

(focus (second rp+focus+context))

(context (third rp+focus+context)))

(track-blank -tracing- 3 3)
(track -tracing- 3 ,(- .- =--------) I)
(track *tracing* 3 (- - - - - - - RHETORICAL PREDICATE - - - - - - -

(track -tracing- 3 ,(- - .)-i)

(trackf -tracing- 3 '(pp-form ',rp) 2)

(realize ; realize tree
(assign-syntax-function ; build syntax tree (unify w/grammar(
(assign-relational-function m sake syntactic location choices

rp rhetorical predicate

(assign-semantic-function rp) ; case roles
(assign-pragmatic-function rp focus context); focus, context, reference

decisions/information

FUNCTION: assign-pragmatic-function
PURPOSE: to perform prematic function analysis of the rhetorical I

predicate, determining focus and topic issues.
NETHOD: focus shifting algorithm based on Sidner's local focus theory. I

Anaphora decisions based on focus information.

(define (assign-pragmatic-function rp focus context)

(list

(second focus) ; d~scourse-topic-entity
focus focus
context ; current context

---)4

2 translate.1 Sun Aug 30 15:08:21 1987

FUNCTION: asaign-semantic-function
PURPOSE: To perform a semantic function analysis of the sentence

by partitioning the rhetorical predicate into case roles.

(define (assign-semantic-function rp)

(list
(rp-action rp) ; action

(second rp) : agent (one or many w/modifiers)

(third rp) patient (one or many w/modifiers)

(functional-role 'instrument (fourth rp)) ; instrument
(functional-role 'location (fourth rp)) : location
(functional-role 'function (fourth rp)) function
(functional-role 'external-location (fourth rp)) ; external location

(fifth rp) : beneficiary (verbs w/ indir obj) (or

agent2l
(sixth rp) ; manner (or patient2]
(seventh rp) time
(causal-action rp) cause
S(eighth rp) state

FUNCTION: functional-role
PURPOSE: to take a role-list (which originates from the distinguishing

descriptive attributes (DDA) list in the knowledge base) along
with a desired role, and return the value for that role.

(define (functional-role role role-list)

(cond
((null role-list) nil) ; no more left to check
((eq (first (head role-list)) role) found proper role?

(second (head role-list)) : return value

(t (functional-role role (tail role-list))) else tail recurse

FUNCTION: rp-action
PURPOSE: to determine the action of the given predicate type.

(define (rp-action rp(

(let ((type (first rp)))
(cond
((eq type 'definition) 'be)
((eq type 'attributive) 'have) : for passive -) is attributed to

((eq type 'constituent) 'contain) : has or contains / there are
((eq type 'evidence) 'indicate)
((eq type 'illustration) 'be)

((eq type 'cause-effect) 'be)
(eq type 'compare-contrast) 'have)
((eq type 'inference) 'be)

FUNCTION: causal-action I
PURPOSE: to determine the causal action of the given predicate, if pos. I

(define (causal-action rp)
(cond
((and (eq 'cause-effect (first rp)) cause-effe-t prod

(leaf-node? rp)) lower level of t-

'indicate) 4ue indicto
(t nil)

FUNCTION: leaf-node?
PURPOSE: to determine the given rp represents entities at leaf node.

(define (leaf-node? rp)

(cond ((or (act? (cadar (fifth rp))) (result? (cadar (fifth rp))))))
; lower level tree

unmotivated -- make this domain independent in future

3 tramalatel1 Sun Aug 30 15:08:21 1987

FUNCTION: detoreine-relational-function
PURPOSX: to determine constituent relational iformation based on

*rhetorical predicate along with focus information and cases.
METHOD% Active/passivo surface form selected in order to emphasize

*focus. if cf is one of agents then active, else passive.
surface insertions are motivated by the rhetorical primitives. I

*In the case of the action "be", if the form Is also passive.
then you achieve passivisation by means of there insertion.

(define (determine-relational-function rp action agent cf)

(let ((type (first rp)) predicate type
(voice active voice if
(cond ((equal cf (head (foci rp((('active) o f is subject foci

((member action -(be have)) 'active) can't passivize
(t 'pasffiv#(((else passive

(cond
((and (eq voice 'passive) (eq action 'be)) '(active((there-insertion
(t
(cons
voice
(cond
((eq type 'illustration) '(oxamplo-insertion((
((eq type 'inference) 1(thersforo-insortion((
((eq type 'constituent) '(colon-insertion))
((eq type 'cause-effect) '(because-insertion((complex sentence?
(t nil)

FUNCTION: Insertions
PURPOSE: to insert relational forms (such as "for example") which are

motivated by the rhetorical predicates.

LINGUISTIC
MOTIVATION: Well-connected text is aided by lexical connectives which I

help to indicate the rhetorical role the utterance plays in I
discourse. The connectives presented here are a subset of I
the taxonomy of markers discussed in Halliday (1985, p 302-7(1

(define (insertions relational-structure form)

(cond
((eq form 'example-insertion)
(append (list (head relational-structure((

(list (mapcar 'look-up '(comma for example comma)))
(tail rolational-structure()

((eq form 'colon-insertion) The brain has two hem: 1 and r.
(list (first relational-structure) subject/agentl

(second relational-structure) predicate
(third relational-structuro(dir-objoct/pationtl
(fourth relational-structure) mnd-object
(fifth relational-structure(ind-object2
(sixth relational-structure) ind-object3
(list (look-up 'colon)) punctuation
(seventh relationsl-structurt(ind-object4/agent2
(eighth relational-structure) modifiers/patient2

((eq fore 'because-insertion) form complex sentence:
(list (first relational-structure) subject/agentl

(second relational-structure) predicate
(third relational-structure) dir-object',patienti
(fourth relational-structure) ind-obiect
(fifth relational-structure) ind-object2
(sixth relational-structure) ind-object3
(list (look-up 'because)) cause-effect connective
(seventh relational-structure(ind-object4/agent2
(eighth relational-structure) ind-object5/agentt2
(cond
((tenth relational-structure((prodicate2
(t (second relationtal-structure(((repeat predicate

(ninth relational-structure) modifiers/patient2

((eq form 'therefore-insertion(
(append (list (head relational-structure((subject/agentl

4 treaelate.I Sun Aug 30 15:08:22 1987

(list (mapcear 'look-up
'(comma therefore comma))) therefore connective

(tail relational-structuro))) rest of relational structure
((eq form 'there-insertion) There are two hen in the brain.
(cons (look-up 'there) relational-structure))

((eq form 'it-oxtraposition) It is Alsheimer's disease
(append (list (list (look-up 'it))) ; that the patient has.

(list (list (look-up 'be))) ; left-cleft/topicalisation
relational-structure

(t relational-structure)

FUNCTION: assign-relational-function

PURPOSE: To take function and form of sentence and generate a structure.
LINGUISTIC
PRINCIPLE: Motivated by Relational Grammar approach, attempt to embody

general, syntax-independent rules which govern relational
constituents (eg subject, object, predicate) rather than
syntactic components (eq noun phrases, verb phrases).

(define (assign-relational-function rp case pragnatics)

(let- ((action (first case)) Case Roles
(agent (second case))
(patient (third case))
(instrument (fourth case))

(location (fifth case))
(function (sixth case))

(external-location (seventh case))
(beneficiary (eighth case)) ; beneficiary
(manner (ninth case)) (for verbs w/indir object)
(time (tenth case))
(causal-action (tenth (tail case))) : for complex sentences
(state (eleventh case))) : as in Q is R since X indicates Y

(topic (first pragmatics)) discourse-topic-entity
(focus (second pragmatics)) : FF-CF-PF
(context (third pragmeatics)) ; previously uttered entities

(relations (determine-relational-function rp action agent (second focus)))
(voice (first relations)) ; voice - active or passive

(form (second relations)) : form - for-example, it-extraposition

(tense (cond (time) (t 'pros))) tense - pros (default) or past

(predicate (make-v action tense voice)) relational constituents
(subject (make-np agent focus context 'and)) list of agents/patients
(dir-object (make-np patient focus context 'and)) sake all nps + conj
(ind-object (make-pp instrument 'with focus context))
(ind-object2 (make-pp function 'for focus context))
(ind-object3 (make-pp location 'located-in focus context))
(ind-object4 (make-pp external-location 'on focus context))
(ind-objectS (make-np beneficiary focus context 'and))
(modifiers (make-np manner focus context 'and))

(predicate2 (make-v causal-action tense voice)) ; second verb

dynamic tracking routines for monitoring program behavior

(track -tracing- 3 '(PRAGMATIC FUNCTION fdiscourse-topic-entity/focus/ i-nl: I
(trackf -tracing- 3 '(pp-form '.pragmatics) 3)

(track -tracing- 3 '(SEMANTIC FUNCTION :)f
(track *tracing* 3 '(action agent patient inst loc funct manner time ca'ii-
(trackf *tracing* 3 '(pp-form ',case) 3)

(track -tracing- 3 '(RELATIONAL FUNCTION (voice and form': ,relations) 2)

(cond
((or (null subject) (null dir-object)) nil) no full sentence
((eq voice 'active) ; active voice

(let ((final-order
(apply 'append
(insertions (list subject predicate dir-object ind-object

ind-object2 ind-object3 ind-object4
ind-objectS modifiers predicata2)

S.--b- -- -- - -

S trauslate.1 Sun Aug 30 15:08:31 19:7 prdat sujc idojt

torn)?))
(cond ((null final-order) nil) ; Save final order

(t (list final-order)))

)1s

((oq voice 'passive) ;passive voice

(lot ((final-order ;promote dir-obj
(apply 'append ;to subject position

(insertions (list dr-object predicate subject nd-object
(nd-objnct2 end-object3 rnd-obj-ct4 ind-object5)odifiers)

form,))
(cond ((null final-order) nil) s ave final order

(t Ilist final-order)))
I

I

I cond
((n lt

I fnc

FUNCTION: ran-nil
PURPOSE: to refe nil' from a list but preserve list structure.

(define !irn-nil 1)

(cond
((null 1) nil) ;stop if finished
((null (head ru (r in-nil (tilr I) next null -> drop it
(t tcons (head 1) (rm-nil (tail 1i) poelse keep it end rcurse

FUNCTION: assign-syntax-function

PURPOSE: To unify lexical list with the given grammar nd produce a
consistent and wll-featured syntax tree.

METHOD: Utflimet a chart data structure which acts bs c well-form d
aubatrinq table containing all the possible structures.

First the routine generate-tre generates the chart.
At the end of the unification process, the tree generation
procedure returns a list of possible edges which represent
all the possible ways to realize the given input. The
procedure output-parses-features retrieves the successful
realizations from the chart by consistently percolating
features up the edges which constitute the tree.

As in interpretation, there may be more than one possible way

to realize a given structure.

(define (assign-syntax-function lexical-list)

(let ((lexical-list (first lexical-list)))

(track *tracing* 3 '(LEXICAL INPUT TO SENTENCE GENERATOR:))

(trackf -tracing- 3 '(pp-form ',lexical-list) 2)

(generate-tree lexical-list 's *gramear*) ; realises surface form

(track *tracing- 3 '(SYNTAX OUTPUT FROM SENTENCE GENERATOR:))
(trackf -tracing* 3 '(output-parses-features

(flnd-feature-parses 's ',-chart-)) 2)

(first : select the first succe-f,)]
(parse-tree-feature-list realization for now¢
(find-feature-parses a -chart*)))

1)p

i --1 .-i iii l i - I

SECTION 9

RELATIONAL GRAMMAR MODULE

reltiomelgrao.1 Sun Aug 30 15:09:52 1987

NODULE: RELATIONAL GRAMMAR
PURPOSE: To make decisions on the relations and determining of

constituents given semantic (is role) information as well
as pragmatic information.

OWNER: copywrite Mark T. Maybury, June, 1987.

LINGUISTIC

PRINCIPLES: This code is motivated by relational grammar (Perlmutter,
* 1980), which suggests interpretation and generation requiresl

; a distinct level of representation between syntax and
semantics. Furthermore, this theory shows some promise
in language portability. The syntactic experts which
build relational constituents are constrained by pragmatic

* (e.g. given/new context and focus) as well as syntactic
; knowledge. While these syntactic experts are language

dependent, and would therefore need to be rebuilt for a new
target language, the relational constituents which they
represent have shown promise in universality (c.f. Cole
and Sadock, 1977).

--\

FUNCTION: make-np
PURPOSE: to generate a noun phrase based on the agent(s) given
METHOD: Select lexical entry

Generate NP
INCOMING: ((brain)) -> (the brain)

((lobe lfrontal) (test language)) -) the lfrontal lobe & the
((lobe) (test)) -> the lobe and the test
((value test indef 1)) -> a damage value of one

((hemisphere two)) -) two hemispheres

(define (make-np agents focus context connective)

(conjunction

(make-all-nps agents focus context)

connective)

(define (make-all-nps agents focus context)

(cond
((null agents) nil)
(t
(append
(list (aks-nps (head agents) focus context)) : make first np
(make-all-nps (tail agents) focus context) tail recurse

(define (lister item) (cond ((null item) nil) (t (list item))))

FUNCTION: make-nps
PURPOSE: to generate a noun phrase constrained by:

- pragmatic knowledge of local focus and context (eg referent-
- relational knowledge of phrasal components

- morphological knowledge of lexical agreeoment (eg a, an)

METHOD: If previous discourse topic entity (ag focus) is continuing,

then replace np with appropriate anaphora.
Else build an appropriate noun phrase.

LINGUISTIC
STRUCTURE: NP -c quantifier article modifiers head post-modifiers

(define (make-nps agent focus context)

agent -I (head + modifier + determiner quantifier)
(cond
((use-anaphora? agent focus) : if forefronting in reader
(let- (descr (get-entry (look-up (first agent)))) use snaphoric reference

(list (pronom (syntax (get-entry (look-up (first agent))))))

.4

)*

rolatiomalgram.1 Sun Aug 30 15:09:53 1907

(t
(let* ((head-entries (lister (look-up (first agent)))) check head

(heed (get-entry (car head-entries)) get lexical cat of some entry
(modifiers (lister (look-up (second agent)))) look modifier (adj/ordinal/nom

inel)

(modifier2 (lister (look-up (fifth agent)))) modifer2
(after-dot (cond ((get-entry (car modifier2);) determine word

((get-entry (car modifiers))) following determiner

(t heed))) for morph agreement
(determiner (select-determiner agent head context)); select determiner
(article (cond ((lister (choose-article after-dot determiner)) ; default to
(of-nun (cond ((fourth agent)

(list (look-up 'of) (look-up (fourth agent))))))
(quantifier (lister (sixth agent)))

(append quantifier article modifier2 modifiers head-entries of-num)

FUNCTION: head-type, head-syntax
PURPOSE: to determine the category or syntax of the first lexical entry. I

(define (head-type entries) (word-type (first (tail entries))))

(define (get-entry entries) (first (tsil entries)))

FUNCTION: choose-article
PURPOSE: to select an appropriate article from the dictionary given the I

linear lexical successor of the determiner.

(define (choose-article entry type)

(cond

((eq type nil) nil) if none
((eq type 'indef) if indef art check
(look-up (indefinite (realistion entry)))) spelling of np head

(t (look-up (indefinite (realisation entry))))
(t (look-up 'the)) default to indef article

FUNCTION: indefinite
PURPOSE: to determine the proper indefinite article based on the first

character of the provided word.

(define (indefinite word)

(cond ((member (first (explode word)) '(a a i o u)) 'an) (t 'a))

FUNCTION: select-determiner
PURPOSE: to select a determiner for the np guided by pragmatic

constraints.
THEORY: New information is generally introduced by the indefinite art.

; Given information is generally introduced by definite article.
* NB: new information is that which has not yet been uttered t I

the speaker/reader in the current discourse. Given information

is all that has been generated for the speaker/reader.
; If ass or proper-noun, no article.
; If compound noun, complex noun (eg hyphenated) or modifier->defl

(define (select-deterninor np-skeleton entry context)

(let ((category (word-type entry)))
(cond
((eq category 'proper-noun) nil) if proper noun no article
((eq category 'pronoun) nil) ; if pronoun no article
((eq (noun-type entry) 'mass) nil) if mess noun no article
((eq (third np-skoleton) 'none) nil) suppressed article?
((oq (word-type (get-entry (look-up

La-

3 reltiomnlgrnm.l Sun Aug 30 15:09:54 1987

(second np-skoleton)))) 'proper-noun) nil); modifier proper-noun?
((eq (third np-skeleton) lindef) 'indef) ; indef article?

((eq !third np-skeleton) 'dof) 'def} ; suppressed article?
((given? (first np-skeleton) contest) 'def) ; information given? -> def
((not (null (second np-skeleton))) 'def) ; modifier to restrict interp? - def
((not (null (fifth np-skeloton))) 'def) compound noun? -) def
((complex-noun? (realisation entry)) 'def) complex-noun? -> def
((complex-noun? (first np-skeleton)) 'def) ; complex-noun? - def

((new? (first np-skeleton) context) 'indef) information now? -) indef
(t 'indef) else default to indef

FUNCTION: given?
PURPOSE: to determine if en entity has been mentioned previously (in

; recent conversation) and, therefore, is known or in the "front
* of the mind" of the reader/listener.

(define (given? entity context)

(member entity context)) : simply past focus is not rich enough

FUNCTION: new?
PURPOSE: to determine if an entity can be considered as new information

I by testing if it is just being mentioned in context for the
first time.

--

(define (new? entity context)

(not (member entity context))) ; not already utterred

FUNCTION: complex-noun?

PURPOSE: to determine if the provided entity is a complex noun.

(define (complex-noun? noun)

(member '- (explode noun))) ; if has a hyphen, it's a complex noun

FUNCTION: conjunction
PURPOSE: to take a list of constituents and return a list with the

linear order of constituents, appropriate punctuation, and
; insertion of the connective.

(define (conjunction constituents connective)

*(cond

((null (tll constituents)) (head constituents)) ; only one?
(null 4tsl (tal onstituensj ; just before end?

(append
(head constituents) ; take next to last

(list (look-up connective)) connective

(first (tail constituents))) . last item

It (append

(head constituents) ; else tail recurs*
(list (look-up 'comma)) building list with punct.
(conjunction (tail constituents) connective))

FUNCTION: make-v
PURPOSE: to generate a verb structure based on the actiun and tense.
METHOD: Select lexical realizations of action

* Select rules based on entry syntax

Choose article if necessary
; Choose particle if necessary for verbal phrase

Generate NP

(define (make-v action tense voice)

(let* ((entries (look-up-verb action)) ;search lexicon for action realizations
(head (head-type entries)) ; use for aux selection in future

(auxiliary ; select an appropriate aux

-aa

4 relationalgram.1 Sun Aug 30 15:09:54 1987

(choose-aux action tense voice)))

(cond
(auxiliary

(append ; if require auxiliary
auxiliary ; aux

(list (list action + verb

(make-verbe-past-participle ; tense = past particple

(a-list action))))

(verbal-phrase action voice) ; + particle for verbal phrase

(entries (list entries)) ; else just entries if any

(t nil)

FUNCTION: make-verbs-past-participle ("eat" -) "eaten")
PURPOSS: To return the list of dictionary descriptions which appear in

the given s-list of some word, filtered so that the verbs are
past-participle.

INPUT: the association list for the word
OUTPUT: The modified a-list

(define (make-verbs-past-participle a-list)

(cond
((null a-list) nil)

((eq (word-type (head a-list)) 'verb) ; change only if verb
(append ; attach fixed head to tail
(list ; fix head

(cons
(appendl

(my-delete 'verb
(subst 'past 'pros (syntax (head a-list)))); change to past-participle

'en)
(list (semantics (head a-list))) ; save semantics
(list (realisation (head a-list))) ; save realization

(make-verbs-past-participle (tail a-list)) ; check tail

(t (make-verbs-past-participle (tail a-list))) I else check only tail

(throws out non verbs)

FUNCTION: choose-aux
PURPOSE: to select an appropriate auxiliary from the dictionary given

the word entry.

(define (choose-aux action tense voice)

(cond

((eq voice 'passive) ; if voice passive
(cond . non-passifiable verb?

((member action '(be have)) nil) return nil
(t (list (look-up-verb 'be))))) ; else return auxiliar--

(t nil) otherwise there is non-

FUNCTION: verbal-phrase

PURPOSE: to return the appropriate verbal particle to complete the

* verbal phrase in the passive tense.

(define (verbal-phrase verb voice)

(cond

((eq voice 'passive) : passive voice?
(cond : return particle based

((eq verb 'contain) (list (look-up 'in))) : upon verb type

((eq verb 'indicate) (list (look-up 'by)))

(nil) ;or nothing at all

h a
r -". , .,=~m=,mm im~-li -i I i -.. ''

S relationalgran.1 Sun Aug 30 15:20:03 1987

(t nil) otherwise nil

FUNCTION: make-pp
FURPOSE to generate a pp structure based on the object provided.
NETNOD: Select lexical entry

Select rules based on entry syntax
Choo article if necessary
Generate pp

(define (cake-pp object relation focus context)

(lot* ((entries (look-up Ifirst object))) search dictionary
(preposition (choose-prep relation))) select an appropriate preposition

cond
;(null entries) nil) no realization or no object
((null proposition) nil) no preposi ion -> nil
(t (append preposition (make-nps object focus context)), e lse build true np

FUNCTION: choose-preposition
PURPOSS: to select an appropriate preposition from the dictionary given

word entry.

(define (choose-prep type)

cond
))eq type 'located-in) (list (look-up 'located) (look-up 'in))
(t (list (look-up type)))

FUNCTION: select-word
PURPOSE: to choose a word from a list given a constraining syntax

and return a word description with a bound feature list.

(define (select-word syntax word-list)

(let- ((variable-counter 30)
(features (rechristen-variables syntax))
(word-syntax (rechriston-variablas (syntax)head word-list))

cond
((my-unify features word-syntax) does this word unify?

(list :if yes, return it
(my-bind features instantiated

(my-unify features word-syntax))
(semantics (heed word-list))
(realization (head word-list))))

(t (select-word syntax (tail word-list))))

FUNCTION: get-featureI
PURPOSE: to return the feature/value list given the feature name & syntax)

(define -(get-feeture -feature syntax)

cond
((null syntax) nil)
)listp (head syntax))
(cond ((eq feature (first (head syntaxMM
(t (get-feature feature (tail syntax)J)

'so

SECTION 1o

GENERATE MODULE

Sam-L

jomeratel Sun Aug 30 15:08:03 1987

MODULE: GENERATE COMPILE
PURPOSE: To compile r outines which perform syntactic generation.

OWNER: copywrite M r k T. Maybury, June. 1987.

LINGUISTIC
PRINCIPLE: This code loads the syntactic modules which use & unification

feature grammar together with lexical entries to generate

a well-formed syntactic tree. This eventually will be 1
linearised, and the syntactic categories will guide

selection of morphology.

... declare global variables, macroe compiled and *veled during compile

(declare (special -tracing- *grammar* -non-torminals-

*syntax-grammarO
grammarlooded- dictionaryloaded- knowledgebaseloaded-'
-sentenceparsed-
*agenda- -chart- -stock-
*response-

(macros t))

(include -/lisp/aemantics/localf.parse) local functions for efficiency

;- following used for debugging:

:(include /user/sgp/lispaids/treeprint.l(tree printing functions

(include -/lisp/syntax/find parses.1(routines for listing rule firingo

(include -/lisp/syntax/rulo trses.l(routines for listing rule firings

(include -/lisp/syntax/debuj.l(debug routines

;O** dictionary routines **

(include -/lisp/dictionary/dictionary macroslO functions to create a dictionary

(include -/lisp/dictionary/Cokediction;ary.1) functions to create a dictionary

(include -/lisp/dictionary/genlookup.l(functions for dictionary look-up

; (include /lisp/dictionary/lookup.l(functions for dictionary look-up

;(Include -/lisp/dictionary/root.l(root finder for words

;**- generator and chart routines *

(include -/lisp/grammars/gen_cfg2.l(functions for generating sentences from CFG

(include -/lisp/syntes/catogory.l(functions for lox category search/match

(include surface gonerator.l) syntax tree generation routines

(include compilegram.l(grammar compile routines

(include preprocess.l(local routines for preprocessing

(include -/lisp/syntex/proprocess.l) routines for preprocessing

(include -/lisp/syntax/vortex..edge.fast) routines for vertices and edges

(include -/lisp/syntax/unification.l(routines for unification + binding

(include -/lisp/syntas/foaturoeparsee.l) routines for parsing with features

(include -/lisp/ayntax/featureprocess.fast) processing feature routines

treeprint.1 Wed Aug 19 04:56:32 1987

................. TREEPRINTER *.........* - * -*.......

prints a labelled bracketing out as a tree. If no second argument
is given, output is asuumd to be the standard Ii.e. terminal).
A second argument must evaluate to an output port:
)troeprint <tree> <port>)
Syntax of input is:

<tree> ::= (<node-label> <daughter>*)
<daughter> ::- <tree>

terminals are the case where the node label is the only member of the tree

e.g.

(tr*eprint '(s (np (n (joe))) (vp (v (likes)))np (n (mary)

Where node-labels are not atoms, the fn 'node-label' will need changing.

NB maximum width governed by Franz defaults

;; * *************MAIN ******....

:; treeprint is a lexpr:

(defun treeprint (s goptional (port nil))

(setq S (make-tree-level n (find-max-depth s 0)))

(setq s (replace-all-nodes s nil))

(annotate-nodes-with-width-info s 0 nil)

(treaprint-aux (list s) port nil]

first the tree is adjusted so that all the terminals are at the same
depth from the root. Dummy nodes are used to make the tree a uniform

object. Both they and the actual nodes are replaced by gensyms, and attached

to the gensym as a property by replace-all-nodes.
'annotate-nodes-with-width-info' goes down the tree
recursively attaching to each node as a property its width:
the number of characters in the widest symbol from it to the terminal

it dominates (or sum of such if a branching node). This is used by the

actual printing functions to centre each node properly.

(def treeprint-aux
(lambda (s port next)
(if (setq next (print-nodes s nil port))

then (print-downstrokes s port)
(if (no-branching-in-any s)

then (treeprint-aux next port nil)

else (print-hsrixontsls s port)
(treeprint-aux next port nil))

else (terpr port)

:*-*** LEVELLING A *esosooeeeeeaossssee*sosoossss
extra dummy nodes of form e.g. '-1' are added to make sure all the

terminals are at the same depth. This makes life easier, and usually

looks better

(def is-preterminal
(lambda (i)
(and (atom (car i))(atom (caadr i))(null (cdadr i)

(def make-tree-level
(lambda (tree depth)
(if)is-preterminal tree)
than (add-extra-depth tree depth)

else (cons (car tree)
(mapcar '(lambda(x)(make-tree-level x (subl depth)))

(cdr tree]

goes up and down a tree adding extra nodes

(def find-max-depth

(lambda (i counter)
(if (null i) then counter
elseif (atom (car i))

then (max counter (find-max-depth (cdr i) counter))

else (max (find-max-depth (car i((addl counter))

(find-max-depth (cdr i) counter]

(def make-dummy-node
(lambda (node)
(implode (mepcar '(lambda (x)(guote *)) (explode node]

makes node consisting of as, same length as original

.... ,,--l , , - ,- rim --d UUS Ul mlmmm l u i Ss -

2 treeprint.1 Wed Aug 19 04:56:33 1987

(def add-extra-depth
(lambda (pre-tormn extra-depth)
(list (car pre-termn)

(add-extra-depth-aux

(make-dummy-node (car pro-termn))
(cadr pre-termn)
(subi extra-depth)

(def add-extra-depth-aux
(lambda (dummy terminal extra-depth)
(4f (lessp extra-depth 1) then terminal
else (list dummy (add-extra-depth-aux dummy terminal (sub1 extra-depth)

- LABELLING THE NODES*.
each node in the tree is replaced by a new symbol, acting as an
index for information about how wide the constituent is, and how big
the node itself is

(def replace-all-nodes

(lambda (tree label)
(if (null (cdr tree))

F then (setq label (gensym (car tree)))
(putprop label

(node-label (car tree))
'category)

(list label)
else (setq label (gensym (car tree)))

(putprop label
(node-label (car tree))
category)

(cons label (mapcar '(lambda (x)(replace-all-nodes x nil)) (cdr tree]

(def node-label
(lambda (i)
(if (eq ' (car (explode i))) then
else i(

for a grammar using non-atomic node-labels this fn has to be different

................................. WIDTHS

(def annotate-nodes-with-width-infc
(lambda (tree biggest-so-far nodelength)
(setq nod*length (atom-length (get (car tree) 'category)))
(if (null (cadr tree)) ;terminal
then (putprop

(car tree)
(setq biggest-so-far (addl tmax biggest-so-far nodelength)))
'width)

biggest-so-far
else (putprop (car tree)

(setq biggest-so-far
(sum-widths (cdr tree}(max biggest-so-far nodelength)))

'width)

biggest-so-far)

(def sum-widths
(lambda (tree-list biggest-yet)
(if (null tree-list) then 0
else (plus (annotate-nodes-with-width-info (car tree-list) biggest-yet nil)

(sum-widths (cdr tree-list) biggest-yet)

(def atom-length
(lambda (a)

(length (explode a)

*-***** PRINTING A NODE

(def print-nodes
(lambda (old new port'
(if (null old) then (terpr port)

new
else (print-node (car old) port)

(print-nodes (cdr old)(append new (cdr (car old))) port)

(def print-node
(lambda (const port)

(prog (Ingth diff)
(setq Ingth (atom-length (get (car const) 'category)))
(setq diff (difference (get (car conet) 'width) lngth))
(msg (P port)(B (quotient diff 2)))
(print (get (car const) 'category) port)
(if (evenp diff) then (msg (P port) (B (quotient diff 2)
else (msg (P port)(B (addl (quotient diff

2
)))))

mi . mml m Ilila"eila~ r
i

Ji~d bal it - I- I - -

tre.print.1 Wed Aug 19 04:56:33 1987

(return t}

........ VERTICAL. LINES

(def print-downstrokes
(lambda (cl port)
(if (null cl) then (terpr port)
else (print-downstroke (car cil) port)

(print-downstrokes (cdr cl) port)

(def print-downstroke
(lambda (const port)

(preg (diff)
(setq diff (difference (get (car const) 'width) 1))
(msg (P port)(B (quotient diff 2)))
(print '! port)
(if (evenp diff) then (msg (P port((B (quotient diff 2)))
else (msg (P port)(B (addl (quotient diff 2)))))
(return t)

*** ******************* PRINT HORIZONTALS:* *****************
. .

(def no-branching-in
(lambda (i)r (e (length i 21

(def no-branching-in-any
(lambda (1)
(if (null 1) than t
alseif (no-branching-in (car)

then (no-branching-in-any (cdr 1)

(def print-horizontals
(lambda (cl port)
(if (null cl) then (terpr port)
elseif (no-branching-in (car cl))

then (print-downstroke (car cl) port)
(print-horizontals (cdr cl) port)

else (print-hor-aux (cdar cl) t port)
(print-horizontals (cdr cl) port)

(def dashes
(lambda (n port)
(if (zerop n) then nil
el.e (print ' port)

(dashes Tsubl n(port)

(def print-hor-aux
(lambda (cdaughters is-first port)

(preg (diff)
(setq diff (difference (get (caar cdaughters) 'width) 1))
(if (null (cdr cdaughters)
ther (dashes (addl (quotient diff 2)) port)

(if (evenp diff) then (msg (P port)(8 (quotient diff 2f)
else (meg (P port)(B (Addl (quotient diff 2)))

elseif is-first
then (eq (P port)(B (quotient diff 2)))

(dashes 1 port)
(if (evenp diff) then (dashes (quotrent diff 2) port)
else (dashes (addl (quotient diff 2)) port)
(print-hor-aus (cdr cdaughters) nil port)

else (dashes (get (caar cdaughters) 'width) port)
(print-hor-aux (cdr cdaughters) nil port)

-- da ,

find_parses.l Wed Aug 19 04:58:39 1987

FUNCTION: complete-edges
PURPOSE: To return the subset of the list of given edges which are

; complete edges. *

(define (complete-edges edges)
(cond
((null edges) nil) no more left? -> go home
((complete? (head edges)) first complete?
(cons (head edges) ; save it

(complete-edges (tail edges)))) : check for complete in tail
(t (complete-edges (tail edges))) else just check tail

FUNCTION: incomplete-edges
PURPOSE: To return the subset of the list of given edges which are *

* inoeplete edges.

(define (incomplete-edges edges)
;###*####*###### #######9*#
(cond
((null edges) nil) : no more left? -> go home
((incomplete? (head edges)) : first incomplete?
(cons (head edges) : save it

(incomplete-edges (tail edges)))) check for incomplete in tail
t (incomplete-edges (tail edges))) else just check tail

FUNCTION: output-trees

PURPOSE: To print ou- a tree listing of the parsings.

*************** ***

(define (output-trees successful-edges)
;0###*#00###*###########################
(let ((trees (parse-tree-list successful-edges)))
(blank 2)
(mapc 'treeprint trees)

FUNCTION: output-parses
PURPOSE: To print out a nice listing of the parsings.

(define (output-parses successful-edges)
:######*#*#######*##########*##########
(let ((trees (parse-tree-list successful-edges)))
(blank 2)
(princ (eval '(pp ,trees))

*************** ***

FUNCTION: parse-tree-list

PURPOSE: To translate a list of successful edges into parse trees.

*************** ***

(define (parse-tree-list successful-edges)
;#*9#####################################a

(mepcar 'make-tree successful-edges)

*************** ***

FUNCTION: make-tree
PURPOSE: To generate a tree parse structure from the information on *

the edge.

I.

2 tind parses.I Wed Aug 19 04:58:39 1987

.......

(define (make-tree edge)

(cond

((is-a-category (category-of edge)) ; if edge is lexical
(list (category-of edge) (contents-of edge)) list (category contents)

(t (cons
(category-of edge) ; heed = cat of edge
(mapcar 'cake-tree (contents-of edge)) tail = trees of contents

; FUNCTION: find-parses *
; PURPOSE: To find all the parses from the chart by finding all the

complete parses starting with edges from start.

(define (find-parses startsymbol chart)
4#4###4### 4*44444### # 44#44*4 4*

(let ((start (first chart) start = first vertex in chart
(finish (car (last chart)))) finish - last vertex in chart

(find-all-parses
startsymbol
finish
(edgys-out start) examine the edges from start

FUNCTION: find-sil-parses
PURPOSE: To recurse on the list of all edges from the start vertex and

test to see if they meet the three conditions required to be
a legal parse:
1-- edge out must have start symbol label.
2 -- the right vertex of edge must be the finish vertex.
3 -- there must be no more required constituents.

(define (find-all-parses startsymbol finish edges-out-of-start)
;#*##*######### ##a
(cond

(null edges-out-of-start) nil) finished -> quit
land : parse good if:
(eq (category-of (head edges-out-of-start)) i edge is start

startsymbol) : symbol and
(eq (right-vertex-of (head edges-out-of-start)) : 2 right vertex is

finish) ; last vertex and
(eq (needed-of (head edges-out-of-start)) 3 no needed constituents

nil))
(cons (head edges-out-of-start) : keep head of list with

(find-all-parses : examine tail
startsymbol
finish
(tail edges-out-of-start))

(t (find-all-parses else examine tail
startsymbol
finish
(tail edges-out-of-stert))

sosooss**ssssx****OooO 05505005555500505x0050*.055*0*so*Osoxoo*Os**oxxxsx*

FUNCTION: remove-edge
PURPOSE: To get the next edge. By altering this routine we can vary

the search process. If we pop the item from the agenda. we *
will search depth first. By removing the next edge from the *
bottom of the agenda we will search breadth first.

**

(define (remove-edge agenda)
,444444444444444444444 444444

3 find _par.s.1 Wed Aug 19 04:58:40 1987

(my-pop (eVal oq.Oda)

rule-troes.i Wed Aug 19 04:58:53 1987

; MODULE: RULE TREES AND TRACE
PURPOSE: To provide support for retrieving rules applied.

....................................

* FUNCTION: output-rule-trees
; PURPOSE: To print out a tree listing of the rules applied.

(define (output-rule-trees successful-edges)

(lot ((trees (rule-tree-list successful-edges)))
(blank 2)
(mapc 'treeprint trees)

* FUNCTION: output-rules
* PURPOSE: To print out a nice listing of the parsings for feature parse.

(define (output-rules successful-edges)
;########8###########################
(lot ((trees (rule-tree-list successful-edges)J)
(blank 2)
(princ (oval '(pp ,trees)))

* FUNCTION: rule-tree-list
PURPOSE: To translate a list of successful edges with their bindings *

into parse trees.

(define (rule-tree-list successful-edges)

(cond
((eq *sentenceparsed* 'top-down) top down?
(mapcar 'make-rule-tree successful-edges))

(t (mapcar 'make-rule-trea2 successful-edges)) ; else bottom-up

FUNCTION: make-rule-tree
PURPOSE: To build a complete tree structure from an edge by calling

make-tree on all the included edges for feature-less grammmar.

(define (make-rule-tree edge)
(cond
((is-a-category (category-of edge)) lexical edge?
(list list of
(rule-of edge) rule of edge
(list (contents-of edge)) semantics or word

(t

(cons
(rule-of edge) rule of edge
(mapcar 'make-rule-tree (contents-of edge)) contained edges

FUNCTION: make-rule-tree2

rule traee.1 Wed Aug 19 04:58:53 1987

PURPOSE: To build a complete tree structure from an edge by calling *

make-tree on all the included edges for a feature grammar.

(define (make-rule-tree2 edqe

(cond
((is-a-category (first (category-of edge)); lexical edge?
(list list of

(rule-of edge) : rule of edge

(list (contents-of edge)) semantics or word

(t
(cons
(rule-of edge) : rule of edge
(mapcar 'maka-rule-tree2 (mapcar 'car (contents-of edge)))

contained edge.

FUNCTION: find-rule-trees

PURPOSE: To find all the rules from the chart by finding all the *

; complete rules starting with edges from start. *

(define (find-rule-trees startsymbol chart)

11-t ((stat, fi.st chart)) start - first vertex in chart

(finish (car (last chart)))) : finish - last vertex in chart
(find-all-rule-trees

startsymbol

finish

(edges-out start) : examine the edges from start

FUNCTION: find-all-rule-trees

PURPOSE: To rocurse on the list of all edges from the start vertex and
test to see if they meet the throe conditions required to be

a legal tree:
1-- edge out must have start symbol label. *
2 -- the right vertex of edge must be the finish vertex.

; 3 -- there must be no more required constituents.
OUTPUT: Return the list of edges with their rule contents which rep

* the valid parses in the chart.

(define (find-all-rule-trees startsymbol finish edges-out-of-start)

(cond
((null edges-out-of-start) nil) ; finished -> quit
((and . parse good if:

(eq (first . 1 first of
(category-of (head edges-out-of-start))) I cat of edge is start

startsymbol) symbol and
(eq (right-vertex-of (head edges-out-of-start)) 2 right vertex is

finish) last vertex and
(eq (needed-of (head edges-out-of-start)) : 3 no needed constituents

nil))
(cons

(list
(head edges-out-of-start) keep head of list with
(contents-of (head edges-out-of-start)) its bindings

(find-all-rule-trees examine tail

startsymbol
finish

(tail edges-out-of-start))

(t (find-all-rule-trees else examine tail

startsymbol
finish

(tail adges-out-of-start))

,I

.1)

3 rule_ trees.l Wed Aug 19 04:58:54 1981

debug.1 Wed Aug 19 04:59:05 1987

MODULE: DEBUG
PURPOSE: To provide a debugging tool for the programmer as well as a

* method of examing the chart if the user is interested.

.................................

FUNCTION: my-debug
PURPOSE: To aid myself debugging as well as to aid in process

* explanation by making the chart procedure transparent to the
caller of the function.

(define (my-debug)
(torpri)
(princ "Please Choose an item below, h for help") (terpri)
(princ "[VortexN, EdqeN, Chart, Agenda, Grammar, Parses, Store, Quit, Help)?
(terpri) (princ "What next?
(setg input (read))
(let ((command (car (explode input)))

(number (reverse (cdr (explode input))))
(cond
((eq command 'v) (cond

((eq *sentenceparsed* 'top-down)
(display-vertex-td (item+end 'vertex number))

(t (display-vertex-bu (item+end 'vertex number)))
(terpri))

((eq command 'a) (display-edge (item+end 'edge number)))
((eq command 'c) (blank 2)

(print-list (append '(CHART CONTAINS:) *chart*))
(blank 2))

((eq command m) (blank 2)
(print-list (append '(AGENDA IS:) *agenda"))
(blank 2))

((eq command ') (terpri) (eval '(pp ,*gremmar")l)
((eq command 'p) (terpri) (princ "Wh~ch part of sentence [s np vp etc]?

(setq -input* (read))
(terpri)
(cond

((eq *sentenceparsed 'top-down)
(let ((parse-parent-edges (find-parses -input" "chart*)))
(output-parses parse-parent-edges) (terpri)
(output-rules parse-parent-edges) (terpri)
(output-trees parse-parent-edges) (terpri)
(output-rule-trees parse-parent-edges)))

(t

(let* ((edges-with-bindings (find-feature-parses *input* *chart*))
(edges (mapcar 'car edges-with-bindings)))

(output-parses-features edges-with-bindings) (terpri)
(output-rules edges) (terpri)
(output-trees-features edges-with-bindings) (terpri)
(output-rule-trees edges)))

((eq command 's) (terpri)
(save (rule-tree-list (mapcar 'car (find-feature-parses 's *chart*))))

((eq command 'h) (terpri)
(princ "Type first character (LOWER CASE) of item and optional number") (terpri)
(princ "Examples: Type 'c' to look at the Chart") (terpri)
(princ " Type '.5' to look at Edge 5 in the Chart") (terpri))

((not (eq command 'q)) (terpri)
(print ""*" Illegal command -- Type h for help")
(terpri)

(cond ((not (eq command 'q)) (my-debug) ; c'ntinue if not quit

(define (item+end item end)
(cond
((null end) nil)
((null (cdr end)) (item+end2 item (car end)))
)t (implode (reverse

(cons (car end)
(reverse (explode (item+end item (cdr end)f)))

.. -. I,,, __ , i,,,, ,,,,, ,,, U " ° :7-

debug.1 Wed Aug 19 04:59:06 1987

(define (item+end2 iteM end)
(implode (reverse

(cons end
(reverse (explode item))))))

(define fsave sxpr)

(prog (out)
(Msg N "Outfile:

(setq out (outfile (read)))
(pp-form expr out)

(close out)
(msg "Item stored" N)

dictionaryjinacros.l Wad Aug 19 04:59:22 1987

FUNCTION: Dictionary Macro definitions (syntax, semantics. etc.)
PURPOSE: To perform certain basic operations quickly.
INPUT: Varys. but generally some type of list.
OUTPUT: Some mambar of the given list or a value such as t or nil.

dictionary access functions:

a description is of the form: ((syntax> (semantics) <realization>)
where (syntax> = (category features >

* seeantics> - lambda expression of meaning
< realization> - surface expression of lexical entry

Idefun syntax macro (description) '(head *)args description)))
(defun semantics macro idescription) (frs tail ,)args description))))
)defun realization macro (description) (frs tail (tail fargs description)))))
)defun word-type macro)deacription) 1)first)syntax ,)args description))))
)defun word-type-category macro)description) '(second (syntax l)args description))))
)defun verb-type macro (description) ')second)syntax ,)args description))))
)defun verb-count macro (description))(third (syntax *)args description))))
)defun verb-tense macro (description 'fourth (syntax (args description)))
)defun verb-person macro (description) ')fifth (syntax *)args description)))
)defun verb-ing macro)description) '(sixth (syntax ()args description)))
)defun noun-type macro (description) -(second (syntax ,)args description))))
)defun noun-count macto (description))1third (syntax *)args description))))
)defun noun-gender macro (description) 'fourth (syntax (e)rgs description))))
)defun adj-type macro (description) 'second (syntax)args description))))

Dictionary predicates

)defun word-type-category-p macro (description)
4eq (args description))word-typa-category (args (tail description)))))

)defun verbp macro (description))eq 'verb (word-type ,)args description))))
(defun nounp macro (description) I)eq 'noun)word-typ* j)args description))))
)dofun adjp macro (description) 'e adjective (word-type ,)args description))))
(defun namep macro (description) '(qproper-noun (word-type ()args description))))
)dafun count? macro (description) ')qcount (noun-type)args description))))

Grammar Rule Macros

(defun rule-name macro)ruledescr) ')firot (args ruledescr))
(defun rule-syntax macro)ruledescr) '(second ()args ruledescr)))
(defun rule-semantics macro)ruledescr) '(third (args rulmdescr))

akedictiomary.1 Wed Aug 19 04:59:33 1987

MODULE: MAKE DICTIONARY

PURPOSE: Routines to facilitate the creation and access of dictionary.

; *********,*** ***********,,****************

;****•***********************************•***

FUNCTION: make-plural *

PURPOSE: To use explode to make a word plural.

(define (make-plural word)

(implode (reverse (append '(: s) (reverse (explode word)))))

************* ***

FUNCTION: my-delete
PURPOSE: To delete a pattern from a given list.

(define (my-delete pattern list)

(cond

((null list) nil)
((equal pattern (car list)) : first # pattern?
(my-delete pattern Icdr list)) skip over it, racurse on tail

(t (cons (car list) : otherwise keep the first and
(my-delete pattern (cdr list)) : delete pattern from tail

FUNCTION: delete-duplicates

PURPOSE: To delete the duplicates within a list.

(define (delete-duplicates list)
;####################0###########
(cond

((null list) list)

(t (cons (car list)

(delete-duplicates (my-delete (car list) list))

FUNCTION: a-list

PURPOSE: To return the association property list of word. *

(define (a-list word) (get word 'a-list))
;###############*#########################J###

9**9*999999999999*99988999999*****9*****************

NH: *

I use * surrounding a symbol to distinguish it as a global variable.

(define (dictionary property) (get '*dictionary* property))
;9999969999999999*99999999#99999#999#9999*999999*9999998999

FUNCTION: dictionary-words

PURPOSE: To return a list of current dictionary words by recursing

on the list of lexical categories in the dictionary.

I o i --.. --- .,,- ---- --, l - -- - I- i I.r :

2 makedictionary.i Wed Aug 19 04:59:34 1987

...... ... ******..******.**

(define (dictionary-words lexical-categories)

(cond
((null lexical-categories) nil)
(t (append (dictionary (car lexical-categories)) list of next lax cat

(dictionary-words (cdr lexical-categories)) : recurse

FUNCTION: words-in-dictionary
PURPOSE: To return a single entry list of dictionary words.

**

(define (words-in-dictionary)
:0440009400*00*40040940*094*0

(delete-duplicates (dictionary-words (dictionary 'lexical-categories)))

Set up dictionary as association lists which are stored as property *
lists for each entry. As each word is added to the dictionary, a-lists *
are built accordingly.

******* **

******* **

FUNCTION: make-now-lexical-category
PURPOSE: checks if the given category already exists in the dictionary. *

if exists already? --> do nothing, return t
else add it to the lexicon.

****** **

(define (Mak&-naw-lexical-category category)

(cond
((member category (dictionary 'lexical-categories)) t) : already?
It (putprop '-dictionary- : else add

(cons category (dictionary 'lexical-categories)) : it in
lexical-categories

****** **

FUNCTION: make-new-verb-category
PURPOSE: checks if the given verb category already exists in the

dictionary.
if exists already? --: do nothing, return t
else - add it to the lexicon

- check if the category "verb" is in "lexical-categories"

(define (make-new-verb-category verb-category)
;*0040*00*0444 4*04444409044*4*4 *49* 04*44440
(cond
((member verb-category (dictionary 'verb-categories)) t) ; already member?
(t (putprop '-dictionary* ; no -> add in

(cons verb-category (dictionary 'verb-categories))
'verb-categories)

(cond : already verb?
((member 'verb (dictionary 'lexical-categories)) t)
(t (putprop : no -> add in

'*dictionary*
(cons 'verb (dictionary 'lexical-categories))
'lexical-categories)

) 5*5***5*****~xssxsxaxsxsscaaax~xxasssss

-- '--' c

3 makedictionary.3 Wed Aug 19 04:59:34 1987

FUNCTION: add-word-to-lexical-category

PURPOSE: To add a given word to the lexical category provided. *

...*** * ******************

(define (add-word-to-lexical-category word category)
*S##I#######l###l###e#e,,#####e############e####

(cond
((member word (dictionary category)) t) ; don't add existing word
(t (putprop '*dictionary* ; otherwise add it to

(cons word (dictionary category)) the category
category

FUNCTION: update-word-a-list
PURPOSE: Updates the association property list for the given word by

; adding the provided description to the list of current
descriptions.

(define (update-word-a-list word description)

(cond ((null (a-list word)) . if word is new
(putprop word (list description) 'a-list) create a-list for word

((member description (a-list word)) : if word already here
(tell-user

'(The word ,word already exists in the dictionary) 1 1)
; say so

(t (putprop word ; otherwise add new descr
(append (list description) (a-list word))
'a-list

of word to the a-list

FUNCTION: make-dictionary-entry
PURPOSE: To make a dictionary entry from the given list. List is in

the following form:

(word-name> ((<syntax>) (<semantics>) <realization>))

**

(define (make-dictionary-entry list)

(let* ((word (head list)) : the word is the first item
(description (tail list)) : the end is the tail
(syntax (first description)) ; the syntax is first of end
(category (first syntax))) ; the category is first of syntax

(cond
((eq category 'verb) • is it a verb?
(make-new-verb-category (second syntax)) : keep its verb type

(t (make-new-lexical-category category)) add lax cat if non-existant

(add-word-to-lexical-category word category) add word if new
(updata-word-a-list word description) : update the a-list of word

dictionary selectors, eutators, and displayers. #

.........l ccclccl~cccccc ... c.c cccc.c....

FUNCTION: pretty-print-a-list
PURPOSE: To print a gorgeous looking association list for word.

m ~~ ~ hh • |

4 uakedictJnary.l Wed Aug 19 04:59:35 1987

(define (pretty-print-a-list word)

;# #### ## ############# # ##
(eval '(pp ,(cons word (a-list word)))) ; pp word with assoc list

FUNCTION: entry-exists
PURPOSE: To return t if an item has an a-list, nil otherwise. *

(define (entry-exists item)
;#: # #4#4##### ## 4 #44

(cend ((null (a-list item)) nil) : return nil if no entry
(t t) : t otherwise

FUNCTION: find-entries
PURPOSE: To show the word indicated.

(define (find-entries item) (show-word item))

**

FUNCTION: show-word
PURPOSE: To print out nicely the word or to say that it does not exists
INPUT: a word
OUTPUT: pretty-print-a-list if word exists or error message

(define (show-word word)

(cond ((entry-exists word) : if there is an entry return
(pretty-print-a-list word)) then show user a friendly list

(t ; otherwise say you can't find it
(tell-user (appendl '(There is no dictionary entry for) word) l 11

FUNCTION: lex-cat-in-a-list
PURPOSE: To test if a given a-list for some word contains a description *

of given lexical catesory (ie return T if a word is of given *

lexical type).
INPUT: a lexical category and the a-list for some word
OUTPUT: t or nil

(define (lex-cat-in-a-list? category a-list)
;#### * ### * ## *########*#####*#############
(cond ((null (car a-list)) nil) : empty head s-list -- : no cat in a-list

((eg (caar a-list) category) t) ; next item in category? --) t
(t (lex-cat-in-a-list? category (cdr a-list))) ; otherwise examine tail

FUNCTION: is-a
PURPOSE: To test if a given word is an example of type category.
INPUT: a lexical category and a word
OUTPUT: t or nil

(define (is-a category word)

(cond
((is-a-category category) ; category known?
(lax-cat-in-a-list? category (a-list word)) : check a-list of word

otherwise not known
((veLb' category) : verb?
(is-of-type category (a-list word)) ; check s-list

(t (tell-user '(,category is not a know lexical category I I):)

- *~. * .*~t * j

5 makodictionmary.1 Wed Aug 19 05:00:35 1981

FUNCTION: is-a-noun
PURPOSE: To determine if a given symbol is a noun in the dictionary
INPUT: a word (atom
OUTPUT: t or nil

(define (is-a-noun word)
###############40#######

(lex-cat-in-a-list? 'noun (a-list word)) : is the lexical category

noun in the a-list?

FUNCTION: is-a-verb
PURPOSE: To determine if a given symbol is a verb in the dictionary
INPUT: a word (atom)
OUTPUT: t or nil

(define (is-a-verb word)

(lex-cat-in-a-list? 'verb (a-list word)) : is the lexical category

verb in the a-list?

FUNCTION: list-dictionary-words
PURPOSE: To list the dictionary descriptions of a given list of words.
INPUT: list of words
OUTPUT: Dictionary description of each word in word list or appropriate

message if a word in the list in not in the dictionary.

(define (list-dictionary-words wordlist)

(cond ((null wordlist) nil) stop if no more words
((null (u-list (car wordlist))) if no next word Say vo
tell-user

fappendl '(There is no dictionary entry for) (car wordlist)) I i

(t list next word with
(scal '(pp (cons (car wordlist) (a-list (car wordlist))))

(list-dictionary-words (cdr wordlit) (recurse on tail

FUNCTION: list-dictionary-words-short
PURPOSE: To list the woids in a given list of words.

* INPUT: list of words
* OUTPUT: thu list vf words

(define (list-dictionary-words-short wordlist)

(fond ((null wordlist) nil) no sore words -- : stop
(t (msg (car wordlist) N) : oth-rwise show first

(list-dictionary-words-short (cdr wordlist)) ; recurse on tail

FUNCTION: filter-a-list
PURPOSE: To return the list of dictionary descripti~ns which appear in

the gi'en a-list of some word and are of given leIcal category*

INPUT: a lexical category and association list of a word
OUTPUT: Dictionary description of each entry in a-list which belongs

to the given lexical category.

(define (filter-a-list category a-1hoti
a 8 as sea 888*888*8888i*8* *eaa#e* iesia

6 makedictionary.A Wed Aug 19 05:00:45 1987

(cond ((null a-list) nil) no more words -- > stop
((eq (word-type (head a-list)) category if next descr in category -) keep
(append

(list (head a-list))
(filter-a-list category (tail a-list)))

(t (filter-a-list category (tail a-list))) otherwise check tail (recurse)

FUNCTION list-category-descriptions-only
PURPOSE: To print all the dictionary descriptions of lexical type

; category which appear in the a-list for each word in wordlist *
INPUT: a lexical category and a list of words
OUTPUT: All the dictionary descriptions for each word in wordlist

* which belongs to the given lexical category.

(define (list-category-descriptions-only category wordlist)

(cond ((null wordlist) nil) ; no more words --> stop
(t (eval '(pp (cons (car wordlist)

(filter-a-list category (a-list (car wordlist)))) (): first
(list-cateaory-descriptions-only category (cdr wordlist)) recurse on tail

FUNCTION: list-l-xical-categories
PURPOSE: To print a list of the lexical categories along with the words

which belong to each category and their corresponding
* dictionary descriptions.

INPUT: a list of lexical categories
OUTPUT: Printout of dictionary descriptions for each word in

dictionary, listed by lexical category.

(define (list-lexical-categories categorylist)
;####8##
(cond ((null categorylist) nil) ; no more words -- : stop

It :otherwise
(tell-user (list (make-plural (car categorylist))) 1 1) : show category
(list-category-descriptions-only (car categorylist)

(dictionary (car categorylist))
I
(list-lexical-categories (cdr categorylist)) ; recurse on tail

FUNCTION: list-lexical-categories-short
PURPOSE: To print a list of the lexical categories along with the words

; which belong to each category
INPUT: a list of lexical categories
OUTPUT: Printout of each word in dictionary, listed by lex category.

(define (list-lexical-categories-short categorylist

(cond ((null categorylist) nil) no more words --) stop
(t

(tell-user (list (make-plural (car categorylist))) 1 1) print leox cat
(list-dictionary-words-short (dictionary (car categorylist))) otherwise show f:

st
(list-lexical-categories-short (cdr categorylist)) recurse on tail

FUNCTION: show-dictionary-formats
PURPOSE: To display the various formats available for show-dictionary. *

(define (show-dictionary-formats)

eI

,a m.-.ea Mh ...-- r mmll- mmm

7 makedictionary.l Wed Aug 19 05:00:45 1987

(tell-user '(Options for Print Dictionary Command:) 2 1)
(tell-user Is - Simple or Short list of alphabetized words) 1 0 5)
(tell-user '(a - All information for words in aphabotlcal order) 1 0 5)
(toll-user '(1 - Lexically ordered list of words) 1 0 5)
(tell-user '((is nouns - verbs - determiners etc)) 1 0 9)
(tell-user '1c - Complete word descriptions by lexical category) 1 0 5)
(tell-user '(7 - Describe the show dictionary formats) 1 0 5)

FUNCTION: show-dictionary
PURPOSE: To print out a pretty list of dictionary entries, p-ssibly

with their descriptions, in the order the user desires most.
INPUT: an optional format argument
OUTPUT: Printout of dictionary words. The exact format of output is

* determined by the option chosen. If no option is provided,

; the output defaults to a simple list of dictionary words.
OPTIONS:

-- Simple or Short list of alphabetized words
a -- All information for words in aphabetical order
1-- Lexically ordered list of words

(io nouns, verbs, determiners, etc)

c -- Complete word descriptions by lexical category

?-- Describe the show dictionary formats

nil option will default to 's and incorrect option will hiccup

(define (show-dictionary &optional format)

(cond
((eq format '7)
(show-dictionary-formats) : describe formats

((not (member format '(s a 1 c ? nil))) invalid format?

(tell-user '(*** format is not a valid option) 1 1) --) hiccup
(show-dictionary-formats) . describe formats

((null (words-in-dictionary)) , no dictionary?

(blank 2)
(princ "*** There are no current dictionary entries.") : -- > complain
(blank 2)

(t : else show it by format
(tell-user '(The current dictionary words include:) 1 2 5)
(cond

((or (eq format 's) (equal format nil)) : user wants Short format?
(llst-dictionary-words-short

(words-in-dictionary))

((eq format 'a) user wants All format?

(list-dictionary-words
(words-in-dictionary))

((eq format 'I) user wants lexicon long?
(list-lexical-categories

(dictionary 'lexical-categorios))

((eq format 'c) short lexicon listing?
(list-lexical-categorles-short

(dictionary 'lexical-categories))

close format vend

close otherwise
close cond

end show-dictionary

FUNCTION: is-a-category
PURPOSE: to toll if a given symbol is a lexical category
INPUT: symbol (potentially a lexical category)
OUTPUT: t or nil

(define (is-a-category item)

(cond
((member item (dictionary 'lexical-categories))) regular lexical category
((verb? item)) ; else a type of verb?

m-Am

makedictionary.l Wed Aug 19 05:00:55 1987

(define (verb? category)

(cand ((member category (dictionary 'verb-categories))))

********* ***

; FUNCTION: my-random
PURPOSE: to use the random number generator (which is not so random)

to produce a (relatively) more random number in given range
; INPUT: range maximum
* OUTPUT: random number between 0 (not inclusive) and given maximum

(define (my-random n)
;9999999#999999999#99

(addi (quotient (random (times 100 n)) 100))

* FUNCTION: find-example-of
; PURPOSE: To randomly choose a word within some lexical category

INPUT: lexical category
OUTPUT: Error message if category non-existent or randomly selected

* word from within given lexical category.

********* ***

(define (find-example-of category)

(cond
((not (is-a-category category)) : not a category?
(tell-user ; -- > complain

'(There are no words of the lexical category ,category
in the dictionary) I l)

((verb? category)
(pick-random-element-from (filter-type (dictionary 'verb) category))

; restrict the type if need be
(t (pick-random-element-from (dictionary category))) ; pick random category word

********* ***

FUNCTION: is-of-type
PURPOSE: Tests the a-list of a word to determine if it is of the given *

; type within its lexical category.
* INPUT: a-list of a word
* OUTPUT: t if of given type, nil otherwise

(define (is-of-type a-list type)

(cond
((null a-list) nil) empty? -- > not of type
([word-type-category-p type (head a-list)) t) : next word ok type? --) t
(t lis-of-type (tail a-list) type)) : otherwise check rest

FUNCTION: filter-type
* PURPOSE: To select only those words of a particular type within a a

* list of words from a lexical category.
* INPUT: list of words in lexical category

OUTPUT: only those words in lexical category list, also of given type. a

(define (filter-type words-in-category type)

(cond

((null words-in-category) nil)
((is-of-type (a-list (head words-in-category)) type) : next word ok type?
(cons : make new list

(head words-in-category) : keep first word
(filter-type (tail words-in-category) type) : filter rest

)I

makedictionary.l Wed Aug 19 05:00:56 1987

(t (filter-type (tail words-in-category) type)) otherwise filter rest

**

FUNCTION: pick-random-element-from
PURPOSE: To randomly choose an element from some list
INPUT: a list
OUTPUT: A random element of the list. The function nthelem is used

; which returns the nth element in lyst starting with I.
The function nth does the same starting with 0.

...

(define (pick-random-element-from lyst)
:*##*99####99*##*#*##*###999*9991#

(nthelem (my-random (length lyst)) lyst)

**

FUNCTION: erasm-words
PURPOSE: To empty out all the current a-list properties for words
INPUT: list of words
OUTPUT: nil

**

(define (erase-words wordlist)
;#*#*#*######################
(cond
((null wordlist) nil) no more? --) finished
(t : otherwise
(remprop (head wordlist) 'a-list) remove a-list
(erase-words (tail wordlist)) recurse tail

FUNCTION: erase-lexical-categories
PURPOSE: To empty out all the current lexical category property lists
INPUT: list of lexical categories
OUTPUT: nil

..

(define (erase-lexical-categories lexical-categories)
#*9#*****9***#99####*#*9#####*****##**9 *##

(cond
((null lexical-categorims) nil) : no more? -- > finished
(t : otherwise
(erase-words (dictionary (head lesical-categories);: erase words in lax cat
(as-loxical-categories (tail lexical-categorias)); recurse tail

FUNCTION: erase-dictionary
PURPOSE: To erase the dictionary by emptying out each lexical category

* property of *dictionary* (io noun, verb, determiner, etc), as
well as the property "lexical-category" of *dictionary* itself.*

INPUT: nil
OUTPUT: nil

(define (erase-dictionary)
;#################0#####0##

(erase-lexical-categories (dictionary 'lexical-categories))
(setplist 'dictionary* nil) erase plist

on dictionary

-A~a,

genlookup.1 Wed Aug 19 05:01:25 1987

* MODULE: DICTIONARY LOOKUP
; PURPOSE: To provide proper entries for provided word in format:

(word-root (<syntax> <semantics) <realization>
* OWNER: copywrite Mark T. Maybury, June, 1987.

--\

; FUNCTION: look-up
* PURPOSE: To search the dictionary for an occurance of the given word,

returning appropriate entries,
; INPUT: A word in "raw" format (ie with any legal suffix or

conjugation.)
METHOD: The property lists are filtered to assure compatability with

provided features. (ie if the word is plural then change
the standard entry accordingly)

(define (look-up word)

(let ((entries (a-list word)))
(cond
((null entries) nil)
(t (cons word entries))

FUNCTION: look-up-verb
PURPOSE: To search the dictionary for an occurance of the given verb,

returning appropriate entries with the word verb deleted for
compatability with grammar.

(define (look-up-verb word)

(let ((entries (delete-word-verb (a-list word))))
(cond
((null entries) nil)
it (cons word entries))

FUNCTION: delete-word-verb
PURPOSE: to remove the word verb from the lexical entry list to allow

for consistency with grammar features.

(define (delete-word-verb a-list)

(cond
((null a-list) nil)
it
(cons
(list (my-delete 'verb (syntax (head a-list)))

(semantics (head a-list))
(realization (head a-list)))

(delete-word-verb (tail a-list))

FUNCTION: make-verbs-past-participle ("eat" -> "eaten")
PURPOSE: To return the list of dictionary descriptions which appear in .

the given a-list of some word, filtered so that the verbs are *
past-participle.

INPUT: the association list for the word
OUTPUT: The modified a-list

(define (make-verbs-past-participle a-list)
;0######### ##00#####1#######################

(cond
((null a-list) nil)

2 qemlookup.l Wed Aug 19 05:01:21 1987

((eq (word-type (head a-list)) 'verb) change only if verb
(append : attach fixed head to tail
(list fix head
(append

(appendl
(my-delete 'verb
(subst 'past 'pros (syntax (head a-list))) change to past-participle

'on)
(list (semantics (head a-list))) save semantics
(list (realization (head a-list))) save realisation

(maak-verbs-past-participle (tail a-list)) check tail

(t (make-verbs-past-participle (tail a-list))) else check only tail
(throws out non verbs)

)AL

lookup.l Wed Aug 19 05:01:36 1987

MODULE: LOOKUP
PURPOSE: To provide support functions for dictionary. *

FUNCTION: singular-noun?
PURPOSE: To determine if a given description for some word is both

in the lexical category noun and of singular persuasion.
INPUT: description (an element of some word's a-list)
OUTPUT: t or nil s

(define (singular-noun? description)

(and (eq (word-type description) 'noun) lexical category noun?
(eq (noun-count description) 'singlp) singular?

(define (mass-noun? description)

(and (eq (word-type description) 'noun) lexical category noun?
(eq (noun-type description('mass) mass noun?

FUNCTION: 3ps-verb?
PURPOSE: To determine if the description is of a verb in the third

person singular conjugation.
INPUT: description (an element of some word's a-list)
OUTPUT: t or nil

(define (3ps-verb? description)

(and (eq (word-type description) 'verb) ; lexical category verb?
(or (eq (verb-count description) 'singlp) ; singular3p?

(eq (verb-count description) 'sing)) ; singular?
(eq (verb-person description) 'p3) ; third person?

:######## A-LIST FILTERS ###################
;#######*#9###*##############

#####*###sam######* ## #########*9########**########*#9#*######*#9#..........

FUNCTION: make-nouns-plural-and-verbs-3ps
PURPOSE: To return the list of dictionary descriptions which appear in *

the given a-list of some word, filtered so that the nouns are *
plural and the verbs are third person singular.

INPUT: the association list for the word *
OUTPUT: The modified a-list

(define (make-nouns-plural-and-verbs-3ps a-list)
;#####################*########################
(cond
((null a-list) nil) ; no more words -- > stop
((singular-noun? (head a-list)) : next descr sing noun?
(append ; attach fixed head to tail

(list fix head
(cons (subst 'plur 'sing3p (syntax (head a-list))); change to plural

(list (semantics (head a-list))) ; save rest

(make-nouns-plural-and-verbs-lps (tail a-list)) check tail

((mass-noun? (head a-list)) mass noun?
(make-nouns-plural-and-verbs-lps (tail a-list)) drop head, recurse tail

((eq (verb-person (head a-list)) 'p1) ; first person?
(make-nouns-plural-and-verbs-3ps (tail s-list)) ; drop head, recurse tail

2 lookup.1 Wed Aug 19 05:01:37 1987

((not (3ps-verb? (head a-list))) next descr not3ps verb?
(append attach fixed head to tail
(list

(cons
(my-delete 'verb
)subst 'sing3p 'plur m sake singular

(subst 'p3 'pl make sure person
(subst 'p3 'p2 is 3rd on
(syntar (head a-list)))) ;)) on head

(list (semantics (head a-list))) ; save rest

(make-nouns-plural-and-verbs-3ps (tail a-list)) check tail

(t otherwise
(append
(delete-word-verb (list (head a-list))) keep head as it is and
(make-nouns-plural-and-verbs-3ps (tail a-list)) recurse on tail

FUNCTION: make-verbs-past-tense
PURPOSE: To return the list of dictionary descriptions which appear in

the given a-list of some word, filtered so that the verbs are
; past tense.

INPUT: the association list for the word 0
OUTPUT: The modified a-list

(define (make-verbs-past-tense a-list)
;####*#################################

(cond
((null a-list) nil)
(leg (word-type (head a-list)) 'verb) change only if verb
(append attach fixed head to tail
(list : fix head
(cons

(my-delete 'verb
(subst 'past 'pres (syntax (head a-list)))) change to past

(list (semantics (head a-list))) save rest

(make-verbs-past-tense (tail a-list)) check tail

(t (make-verbs-past-tense (tail a-list))) else check only tai!

FUNCTION: make-verbs-n't
PURPOSE: To return the list of dictionary descriptions which appear in *

the given a-list of some word, filtered so that the verbs are *
n*t which stands for n't or negative. (ex don't)

INPUT: the association list for the word
OUTPUT: The modified a-list

(define (make-verbs-n't a-list)

(cond
((null a-list) nil)
((eq (word-type (head a-list)) 'verb) - change only if verb
(append attach fixed head to tail
(list fix head
(cons

(appendl (my-delete 'verb (syntax (head a-list)))
'n-t) ;syntax + n't

(list (semantics (head a-list)j) save rest

(make-verbs-n*t (tail a-list)) check tail

(t (make-verbs-n*t (tail a-list))) else check only tail
(throws out non verbs)

3 lookup.l Wed Aug 19 05:01:37 1987

FUNCTION: make-verbs-past-participle ("eat" -> eaten")
PURPOSE: To return the list of dictionary descriptions which appear in

; the given a-list of some word, filtered so that the verbs are
; past-participle.

INPUT: the association list for the word
OUTPUT: The modified a-list

(define (make-verbs-past-participle a-list)
###*#####################################

(cond
((null a-list) nil)
((eq (word-type (head a-list)) 'verb) change only if verb
(append attach fixed head to tail
(list : fix head
(cons

(appendl
(my-delete 'verb
(subst 'past 'pres (syntax (head a-list)))); change to past-participle

'en)
(list (semantics (head a-list))) save semantics

(make-verbs-past-participle (tail &-list)) check tail

(t (make-verbs-past-participle (tail a-list))) else check only tail
(throws out non verbs)

FUNCTION: mke-verbs-ing ("snore" -> "snoring")
PURPOSE: To return the list of dictionary descriptions which appear in

the given a-list of some word, filtered so that the verbs are
ing.

INPUT: the association list for the word
OUTPUT: The modified a-list

(define (make-verbs-ing a-list)
9#99999#9,#9###9######99#####*#9#99##

(cond
((null a-list) nil)
((eq (word-type (head a-list)) 'verb) change only if verb
(append : attach fixed head to tail
(list : fix head
(cons

(appendl add past-participle
(my-delete 'verb (syntax (head a-list)))
'ing)

(list (semantics (head a-list))) save semantics

(make-verbs-ing (tail a-list)) check tail

(t (make-verbs-ing (tail a-list))) else check only tail
(throws out non verbs)

FUNCTION: make-nouns-and-names-singular-possessive
("boy" -> "boy's") ("mark" -> "mark's")

PURPOSE: To return the list of dictionary descriptions which appear in
the given a-list of some word, filtered so that the nouns
or names are singular possessive.

1NPUT: the association list for the word
OUTPUT: The modified a-list

(define (make-nouns-and-names-singular-possessive a-list)

(cond
((null a-list) nil)
(for (eq (word-type (head a-list)) 'noun) change only if noun

(eq (word-type (head a-list)) 'proper-noun)) : or name
(append attach fixed head to tail

4 lookup.A Wed Aug 19 05:01:38 1987

(list fix head
(cons make new list

(appendl

(syntax (head a-list)) ; keep old syntax

'poss) add possessive

(list (semantics (head a-list:,)) ; save rest

check tail

(make-nouns-and-names-singular-possessive (tail a-list))

else check only tail
(t (make-nouns-and-names-singular-possessive (tail a-list)))

(throws out non verbs)

FUNCTION: make-nouas-plural-possassive ("boy" -> "boys'")
PURPOSE: To return the list of dictionary descriptions which appear in

* the given a-list of some word, filtered so that the nouns are

* plural possessive.
INPUT: the association list for the word
OUTPUT: The modified a-list

(define (make-nouns-plural-possassive a-list)
####68*t##NI#*#####*#######880#qW#e

(cond
((null &-list) nil)

((eq (word-type (head a-list)) 'noun) ; change only if noun

(append ; attach fixed head to tail

(list ; fix head
(cons ; make new list

(appendl
(subst 'plor 'sing3p (syntax (head a-list))); make syntax plural
'poss) add: sing-poss

(list (semantics (head a-list))) ; save rest

(make-nouns-plural-possessive (tail a-list)) ; check tail

(t (maka-nouns-plural-possessive Itail a-list))) ; else check only tail
(throws out non verbs)

FUNCTION: maka-adjectives-and-nouns-adverbe ("slow" -> "slowly")
PURPOSE: To return the lat of dictionary descriptions which appear in
; the given s-list of some word, filtered so that the adjectives

and nouns become adverbs.
INPUT: the association list for the word
OUTPUT: The modified a-list

(define (makce-adjectives-and-nouns-adverbs a-list)

cond
((null a-list) nil)
((or

(eq (word-type (head a-list)) 'adjective) change only if adjective

(eq (word-type (head a-list)) 'noun)) or noun
(append attach fixed head to tail

(list fix head
(cons '(adverb) change syntax to adverb

(list semantics is of form
(list (L (e) (adverb _e))

'()

(fist (semantics (head a-list)))

convert semantics to

adverb type
(make-adjectives-and-nouns-adverbs (tail a-list)) ; check tail

(t (make-adjectives-and-nouns-adverbs (tail a-list))) ; else check only tail

..

II)

lookup.l Wed Aug 19 05:01:51 1987

FUNCTION: make-adjectives-comparative (for words like "slow" -> "slower")*
PURPOSE: To return the list of dictionary descriptions which appear in

the given a-list of some word, filtered so that the adjectives
become comparative.

INPUT: the association list for the word
OUTPUT: The modified a-list

(define (make-adjectives-comparative a-list)

(cond
(null a-list) nil)

((eq (word-type (head a-list)) 'adjective) : change only if adjective
(append : attach fixed heed to tail
(list fix head

(cons
(subst 'comparative 'attributive : attrib to comparative

(syntax (head a-list))) : on syntax list
(list (semantics (head a-list)))) save rest

(make-adjectives-comparative (tail a-list)) check tail

(t (make-adjectives-comparative (tail a-list))) else check only tail

FUNCTION: make-adjectives-suparlative (for words like "big" -) "biggest")"
PURPOSE: To return the list of dictionary descriptions which appear in

the given a-list of some word, filtered so that the adjectives
become superlative.

INPUT: the association list for the word
OUTPUT: The modified a-list

(define (make-adjectives-superlative a-list)

(cond
((null a-list) nil)
((eq)ausd-Lyp h ad a-list) 'adjective) : change only if adjective
)appe.:d L aLach fixed h~ad to tail
(list : fix head

(cons
(subst 'superlative 'attributive ; attrib to superlative

(syntax (head a-list))) on syntax list
(list (semantics (head a-list)))) : save rest

)maka-adjactxvs-superlativa (tail a-list)) check tail

(t)make-adjectives-superlative (tail a-list))) else check only tail

FUNCTION: make-nouns-adjectives (for words like "fool" - "foolish")
PURPOSE: To return the list of dictionary descriptions which appear in

the given a-list of some word, filtered so that the nouns
become attributive adjectives.

INPUT: the association list for the word
OUTPUT: The modified a-list

(define (make-nouns-adjectives a-list)

cond
((null a-list) nil)
((eq (word-type (head a-list)) 'noun) change only if noun
(append attach fixed head to tail
(list fix head

(cons
'(adjective attributive) new syntax
(list (semantics (head a-list))) semantics of N and ADJ same

(make-nouns-adjectives (tail a-list)) check tail

(t (make-nouns-adjectives (tail &-list))) else check only tail

- ~ -

lookup.1 Wed Aug 19 05:01:52 1987

FUNCTION: word-has-ending?
PURPOSE: To determine if the provided word ends with the given ending.

This is done by comparing the last letter of the ending with
the last letter of the word until you find that a letter does

; not match (return nil) or until you run out of characters
; (return t since routine has recognized endings as equivalent)

This routine is tail recursive.
INPUT: a word (atom) and an ending (atom)
OUTPUT: t or nil depending upon whether ending provided matches word

(define (word-has-ending? word ending)

(cond
((null ending) t) . no ending? --a matches
(t
(and * both

(eq (last-char word) (last-char ending)) ; same last char
(word-has-ending? (chop-off-last-char word) ; check rest of ending

(chop-off-last-char ending) ; by recursing

(define (chop-off-ending word ending)
;####4##0##################4###########

(cond
((null ending) word) finished ending? --> word
((eq (last-char word) (last-char ending)) same last char?
(chop-off-ending (chop-off-last-char word) : chop off last chars

(chop-off-last-char ending) and recurse

(t nil) ; otherwise not ending

(define (count-noun a-list)

(cond
((null a-list) nil)
(t (or (count? (head a-list)) : head noun of type count? (macro)

(count-noun (tail a-list)) otherwise recurse on tail

(define (verb-or-count-noun a-list)

(cond
((null a-list) nil)
(t (or (count? (head a-list) head noun of type count? (macro)

(verbp (head a-list)) verb? (uses macro)
(verb-or-count-noun tail a-list)) otherwise recurse on tail

(define (chop-off-last-char word)

(cond
((eq (length (explode word)) 1) nil) : only one char? -- nil
(t (implode (reverse (cdr (reverse (explode word))))))

(define (add-char word char)

cond
((null word) nil) : no word? --> nil
(t (implode (reverse (cons cha (reverse (explode word))))))

(define (last-char word) (ultimate (explode word)))

(define (ultimate list) (car (reverse list))) first of reverse

7 lookup.l Wed Aug 19 05:02:04 1987

:#4##############################9###9#### : or first of last

(define (penultimate list) (cadr (reverse list))) second of reverse
;########e###############e##############

(define (pen-penultimate list) tcaddr (reverse list))) third of reverse

(define (nice-listing word descriptions)

(eval '(pp (cons word descriptions)))

FUNCTION: look-up
PURPOSE: To search the dictionary for an occurance of the given word,

checking appropriate word roots.
INPUT: A word in "raw" format (ie with any legal suffix or

conjugation.)
OUTPUT: A nice listing of the proper dictionary entry is displayed,

or an appology is issued.
PROCESS: The search first begins with known words, followed by an

examination guided by the endings on words (ie "ing" or "ad").
The actual dictionary entries reported are built from the
property lists for the recognized word or word-root.
The property lists are filtered to assure compatability with
the word type recognized (ie if the word is plural then change
the standard entry accordingly)

(define (look-up woid)
:**9*9**9***#*9,9*9499
(let ((filtered-word (filtered-root word)))
(cond
((null filtered-word) : no entry?
(tell-user '(I am sorry but I do not know the word word) 2 2) : complain

(t (nice-listing word filtered-word)) else show

FUNCTION: look-up-word
PURPOSE: To search the dictionary for an occirance e- the given wovd,

checking appropriate word roots. A simple version of look-up.
Returns only a legal a-list or the given word.

(define (look-up-word word)

(let ((filtered-word (filtered-root word)))
(cond
((null filtered-word) no entry?
(tell-user '(I am sorry hut I do not know the word word) 2 2) complain

(t filtered-word) : a-list

FUNCTION: is-a-word
PURPOSE: To search the dictionary for an occurance of the given word,

checking appropriate word roots A predicate version of lookup"

(define (is-a-woii word)

(not (null filtered-root word)))

AP-ATOR 33 O#A~"1 2(T AA RN INST oF TECH 212

1 UNCLASSIFIED F/C 12/1 ML

9 m

I r%6

.7

iiIII1.2 jjj.4 1.6

-yr- 'N TEST HART

root.1 Wed Aug 19 05:02:31 1987

(setq -vowela '(a a i o u y)}
(setq *liquid* '(1 r s v z))
(setq *noand" '(c g s v z))

(define (n't-ending? word) (word-has-ending? word 'n't)
(define (*s-ending? word((word-has-ending? word '"a))
(define (--ending? word((word-hes-endir? word
(define (s-ending? word) (word-has-ending? word 'so
(define (ly-ending? word) (word-has-ending? word 'ly))
(define (ing-ending? word) (word-has-ending? word 'ing))
(define (ed-ending? word) (word-has-ending? word 'ed))
(define (on-ending? word) (word-has-ending? word 'on))
(define (or-ending? word) (word-has-ending? word 'er))
(define (est-ending? word) (word-has-ending? word 'ost))
(define (ish-ending? word) (word-has-ending? word 'ish))
(define (ize-ending? word) (word-has-ending? word "ize))

(define (exists? word) (not (null (a-list word)))) t if exists, else nil

(define (find word ending) ; attempts to find word
(cond
((a-list word) (list word ending (a-list word))) : exists --) return all
(t nil) ; else fail

(define (Ist word) (last-char word)) last char
(define (2nd word) (1st (chop-off-last-char word): 2nd from last char
(define (3rd word) (2nd (chop-off-last-char word))) 3rd from last char
(define (lst? word char) (eq (1st word) char)) ; last letter = char?
(define (2nd? word char) (eq (2nd word) char)) ; 2nd to last letter = char?
(define (3rd? word char) (eq (3rd word) char)) ; 3rd to last letter = char?

................................ ...*

FUNCTION: add
PURPOSE: To add or concatenate a given ending to a word. *

(define (add word ending)
:#0###########*#######

(cond
((null word) nil) ; no word -> don't add
((null ending) nil) no ending -> nil
,c (implode (append (explode word) (explode ending)))); otherwise add it on

FUNCTION: root
PURPOSE: To determine the word type and return the root of the word. *

eventually to return the filtered a-list of the word] *

Central ideas from "Procedures as a Representation for Data in a
Computer Program for Understanding Natural Language," Terry Winograd, *
Ph. D. dissertation, MIT, February 1971. Cambridge, Masaachusetss
02139. MIT Project MAC TR-84.

(define (root word)
;#1##4 0 *9*6119*1
(cond
((a-list word)) ; word stored verbatim?
((n't-ending? word) ; don-t
(find (chop-off-ending word 'n't) 'n't) ; look for it

((-s-ending? word) ; Mark-s
(find (chop-off-ending word '"s) '*a) ; look for it

((--ending? word) ; boys*
(s-root (chop-off-ending word 'a*)) ; test s-endng

((s-ending? word) ; lobsters
(s-root (chop-off-ending word 's) ; test s-ending

((ly-ending? word) ; slowly
find noun,adj -, verb

(ly-root (chop-off-ending word 'ly)) test ly-ending

((ing-ending? word) (vowel-root (chop-off-ending word 'ing))) ; blinking
((ed-ending? word) started
(vowel-root (chop-off-ending word 'ad))

((en-ending? word) (vowel-root (chop-off-ending word 'en))) ; shaken
((er-ending? word) (vowel-root (chop-off-ending word 'er))) faster

!_ ~ --- -

2 root.l Wed Aug 19 05:02:32 1981

(eat-ending? word) (vowel-root (chop-off-ending word 'est)) ; tallest
((job-ending? word) sheepish noun -> adj
(find (chop-off-ending word 'ish)'ih

(t ,otherwise express confusion
(tell-user '(1 am sorry but I do not know the word .word) 2 2)

FUNCTION: ly-roet*
PURPOSE: To return the proper ly ending and reot of the word, along

Swith its unfiltered a-list.

NB: word-ly stands for "word minus ly, - that is the word stem less the
ly suffix which is removed prior to this function cell.

(define (ly-root word-ly)

(cond
((find , (happily -) heppy)

(add (chop-off-ending word-ly '('(add y after chop ily
ily "ily" ending

adv --) adj

(t else (ade -- > verb)
(tend .(slowly -> slew)
((find word-ly 'ly)) . try it and if not
(t else
(find ,(cuddly -) cuddle)

(add word-ly 'le) , add Ie to ly-root
ly .1'y" ending

FUNCTION: s-root
PURPOSE: To return the proper a ending and root of the word, along
* with its unfiltered a-list.

NB: word-s stands for "word minus s," that is the werd stem less the s
* suffix which is removed prier to this function call.*

(define (s-root word-s(

(cond
((1st? word-s.a last is a?
(tend
((2nd? word-s '):2nd is i?
(find (add (chop-off-nding word-s 'is) 'y) lies) chop ia, add y

canaries -> canary
((2nd? word-s 'h(2nd is h
(cond
((3rd? word-s '(:3rd is t?
(find word-s '(: clothes -) clothe

(t else
(find (chop-off-ending word-s 'a) 'as) : ??hes -> ??h

((2nd? word-s 'a) :2nd is a?
(find (chop-off-ending word-a 'a) 'a) boaes -> boa

((or (2nd? word-a 's) (2nd? word-s 'a)2nd is s or a?
(tend
((or (3rd? word-s 'a) (3rd? word-s 'a)) :3rd is a or z?
(find (chop-off-ending word-s 'a) 'as) bosses >beess

guizzes q>uiz?
)t (find word-a 's)) : buses ->bus?

fuses ->fuse

((2nd? word-s 'v) 2nd? is v?
(tend

I!I

- --

3 root.l Wed Aug 19 05:02:32 1981

((find word-:s 'so hives -I hivef
,,find (add (co-off-e:nding word-s 'ye) :f I 'veso wolves -) wol
((find (dd (chop-off-ending word-s v) fe 'ys; knives -> knife

(t (find word-s Is)) I ese look upa

(t (find word-s 'a)) look up w/out

FUNCTION: vowel-root
PURPOSE: To return the proper root of the given stem, along with

with its unfiltered &-list.

(define (vowl-root, stem

(cond

((member (1st stem) *vowel*). is lest char Ooe?
(cond .yes :
((1st? Ste. 'i(lest char i?
(find

(add (chop-off-ending stem i(y(cried -) cry
i-)y -stem)

les8t char V?
((1st? stem :y try ing -:try

(find stem 'y-stem(played -,play

((1st? stem'ew last char e?
(cond
((2nd? stem (2nd to last a?

(find stm'e-em frevw -i

(t

(cond
find stem '*Is~((ese try and if not
(t(fi nd (add stem e('a-t((; add a and try

(t (find (add staem 'a) Iasestm(; e add e and look

close 1st VOWEL

((1st? stem 'h) last char h?
(cond
((2nd? etem'tw 2nd to last t?
(cond
((find stem 'th-staz((look for th
It (fin d stm '(the-stem(ls ad

(t (find stem 'th-stem((.1se add a

((eq (1st stem) (2nd stem)) last = 2nd to last?
(co0nd

((mmber (1st stem(*liquid*) as n liud
(nd kissing -5 kiss
(find stem 'X-tm(, try fizzing- fizz
((fi nd (cho p-off-last-char stm) 'XX->X-stem((but quizzing ->quiz

((find (chop-off-last-char stem) 'XX->X-stem2((; else try w/out last

(4mabar (2nd stem(-vowel-)
(cond

((mmber (3rd stem) *vowel*)
(cnd
((member (1st stem) -noend

5
(

(find (add stem* 1e 'VVN->VVNe-stem((
(fl,' *le 'VV -tee(V

gaming -~game

liking -like

:t *modified from T. W.
(cond *add ato the stem

4 root.1 Wed Aug 19 OS:O2:33 1587

((find (add stem 'e) '-)e--stem)) liked -) like

((find stem sm(sufferc~5 -> suffer

((memb~r (1st stem) *liquid*) is last in liquid?
(cond
((chop-off-ending stem 'rl(if the ending is ri
(find stem 'rl-stem((look it up

it (find (add stem 'e('L-Steis(*Iels add an

it else
(cond

(member (lst stem) *noond*) last cher in noend?
(find (add stem *e('-e-st.m2((add en a

it (find stem 'stem)) else look up plain

(define (add-varb-3ps a-list)
(cond

(null &-list) nil)
it
(let ((defn (first a-list()
(cons
(list
(append (list (first (syntax defn(('sing3p)

(nthcdr 3 (syntax defn()
(semantics dofn(
(roelitation dofn((

a-list

(define (deltte-s.ord-verb a-list)
(cond
((null a-list) nil)
it

(cons
(list (my-delete 'verb (syntax (head a-list(((

(semantics (head a-list((
(realization (head &-list)))

(delete-word-verb (tail a-list((

FUNCTION: filtered-root
PURPOSE: An improvment upon root since here e-lists are filtered and
* adjusted according to the mophology of the input. Thus

adjustments in word type, word tense, or word number are
* made where eppropriate.

(define (filtered-root word)

(cond
((delete-Word-verb (a-list word))) word stored verbatim?
((nt-onding? word) don-t
(mako-varbs-n~t
(third (find (chop-off-ending word 'nt(n(look for it

((es-ending? word) Mark~s
leake-nouns-and-names-singular-possessive singular possessive
(third (find (chop-off-ending word '*a) -~s(() look for it

W(-ending? word) boys-
(make-nouns-plural-possessive plural possessive -

(third (s-root (chop-off-ending word ~5((test s-endinq

(is-ending? word) lobsters >
(eake-nouns-plural-and-verbs-3ps

(third (s-root (chop-off-ending word Is)))) test s-endinig1

-- aaLwr S

5 oat.1 Wad hug 19 05:02:42 1987

((ly-ending? wordi slowly
(make-adjectives-and-nouns-edverbs adj -> adverbs
(third (ly-root (chop-off-ending word ly(l:test ly-ending

((ing-onding? 4.rdp blinking
(make-v(bs-ing

(third (vowel-root (chop-off-ending word ling))))

(ed-ending? word) started
(add-verb-3ps
(mak*-verbs-past-tense past tense
(third (vowel-root (chop-off-ending wordedf(

((an-ending? word) shaken
(make-verbs-past-participle :past participle
(third (vowel-root (chop-off-ending word on)))

((er-ending? word) faster
(make-adjectives-comparative :comparative adjective

(third (vowel-root (chop-off-ending word 'or))))

r ((eat-ending? wosd) tallest
(mak*-adjectives-5uporlatv superlative adjective
(hird (vowel-root (chop-offedn od's((

((ish-ending? word) sheep i 7h noun -> adj
(make-nouns-adjectives adjective
(third (find (chop-off-ding word 'ish(((

(t nil) otherwise express confusion

L ,aa_

geomcg2.1 wed Aug 19 05:03:05 1987

MODULE: GRAMMAR SUPPORT FOR FEATUPFS
PURkUSE: To support the grammar accessing functions to allow features

* in the grammar.

**

FUNCTION: lett-hard-side-of
PURPOSE: To left the right hand side of a give rule.

(define (left-hand-side-of rule) (head rule))

FUNCTION: right-hand-side-of

; PURPOSE: To return the right hand side of a give rule.

(define 'right-hand-side-of rule) (tail rule))

:....*.** * 9....9

FUNCTION: is-a-non-terminal
PURPOSE: To determine if a given symbol in the grammar is a non- *

terminal (ie it is on the left hand side of a grammar rild' *

(define (is-a-non-terminal symbol grammar)

;#################*#*9#9##################
(cond

((null grammar) nil) : finished? - quit

((equal symbol : match?
(first (left-hand-side-of first item lhs

(rule-syntax (head grammar))))) t) -) succeed

(t (is-a-non-terminal symbol (tail grammar))) else recurs@

FUNCTION: is-a-terminal

PURPOSE: To determine if the given symbol is a terminal. *

(define (is-a-terminal symbol grammar)
;##########################00#########

(not (is-a-non-terminal symbol grammar))

FUNCTION: a-rule-to-expand

PURPOSE: To randomly choose a rule from all the rules expanding a
symbol in the given grammar.

(define (a-rule-to-expand symbol grammar)

(pick-at-random-from (all-rules-expanding symbol grammar))

FUNCTION: pick-at-random-from

PURPOSE: To pick an item randomly from a given list. *

** * * * **

(define (pick-at-random-from list)

(nthelem (my-random (length list)) list)

....

2 gencf2.1 Wed Aug 19 05:03:06 1987

FUNCTION: all-rules-expanding *

PURPOSE: To return all rules in the grammar that expand given symbol

...

(define (all-rules-expanding symbol grammar)

(cond
((null grammar) nil)
((equal symbol (first (rule-syntax (head grammar))))
(cons (head grammar)

(all-rules-expanding symbol (tail grammar))))

ft)all-rules-expanding symbol (tail grammar)))

FUNCTION: expand-all-symbols *

PURPOSE: To convert a list of symbols into their right hand side of *

the rule equivalent (it expand them).

(define (expand-all-symbols list grammar)
99########9##9#99#####9###9#9##99##999999

(cond

((null list) nil)
((is-a-t-rminsl (car list) grammar) terminal?

(cons (car list) add it to
(expand-all-symbols (cdr list) grammar) : result of recurse

(t (append else make list of

(right-hand-side-of expansion symbol

(rule-syntax (a-rule-to-expand (car list) grammar)))
(axpand-all-symbols (odr list) grammar) and recursion

FUNCTION: generate-sentence

PURPOSE: To ganerate a sentence from the given grammar.

(define (generate-sentence grammar)

(print-list
g(enerate-phrase

(generate-phrase-structuras '(s) nil grammar)

FUNCTION: generate-phrase

PURPOSE: To take a phrase structure (list) and recursively find
* examples of each member in the phrase, consing together to
* return a list result.

(define (generate-phrase phrase-structure)

;#####*#######################9########
(cond

((null phrase-structure) nil) no more phrases? -- > nil
(t (cons otherwise attach example

(find-example-of (head phrase-structure)) : of head categcry

(generate-phrase (tail phrase-structure)) : to tail recurse

FUNCTION: generate-phrase-structures
PURPOSE: To generate phrase structures from a phrase list by *

expanding all symbols in the phrase list until you can't a

expend anymore.

- MNS,, --h_ -- - - n .. " --AL-

|- - lRO.-

3 gen_cfq2.1 Wed Aug 19 05:03:06 1987

(define (generate-phrese-structurms phrase-list last-time grammar)

(cond
((equal phrase-list last-time) phrase-list)

(t (msg phrase-list N) if this included, prints.

(generate-phrase-structuros

(expand-all-symbols phrase-list grammar) phrase-list grammar)

)i

a

category.A Wed Aug 19 05:03:24 1987

MODULE: LEXICAL CATEGORY SEARCH AND MATCH

PURPOSE: To search and match categories within a word description.

FUNCTION: lexical-category

PURPOSE: To determine the lexical category for a given description. *
INPUT: description for some word
OUTPUT: lexical category of description

(define (lexical-category description)

;######### 9#########################
(cond
((eq (word-type description) 'verb) : if word type is verb
(verb-type description)) return verb type

(t (word-type description)) else give word type

(define (lexlcal-category-and-semantics description)

(cond
((eq (word-type description) 'verb) if word type is verb

(append
(list (verb-type description) return verb type and semantics
(semantics description)))

(t
(append
(list (word-type description)) eise give word type
(semantics description)))

FUNCTION: all-Iesival-categories

PURPOSE: To compute a list of all lexical categories in the given a-list*
iNkUl: 4-iL to[some word
OUTPUT: a list of all lexical categories in a-list or nil

(define (all-lexical-categories a-list)

(cend
((null a-list) nil) no more descriptions?
(t (cons : make a list of

(lexical-category (head a-list)) : lxe cat Of J-t derr;U:,
(all-lexical-catogories (tail a-list)); lax cats of rest (recurse)

(define (all-lexical-categories-and-semantics a-list)

(cond
((null a-list) nil) , no more descriptions?
(t (cons m rake a list of

(lexical-category-and-semantics (head a-list)) : lox cat of lst description
(all-lexical-categories-and-semantics (tail a-list)); leox cats of rest (recurse)

FUNCTION: lexical-categories
PURPOSE: To determine the list of lexical categories a word belongs to.

First looks up the word in the dictionary, checking alternate
spellings end roots.

INPUT: a word in the dictionary
OUTPUT: list of lexical categories in a-list or nil
OPTIONS: 1 -- return only list of lexical categories

; 2 -- return list of categories with semantics... .

2 category.l Wad Aug 19 05:03:24 1987

(define (lexical-categories word)

(delete-duplicates (all-lexical-categories (look-up-word word)))

(define (lax-cats-and-semantics word)
;######e#####t####oe##i##O#0#0##O##

(delete-duplicates
(all-lexical-categories-and-semantics

(look-up-word word)))

FUNCTION: current-word *

PURPOSE: To return the lexical-categories of the next word in the input.*

(define (current-word sentence)

(delete-duplicates (lexical-categories (head sentence)

FUNCTION: rest-of
PURPOSE: To return the rest of the given sentence after stripping off *

first word.

(define (rest-of sentence) (tail sentence,:

;00J#iJ##J##J#######iJ#########*J#J##J##JJ##

FUNCTION: end-of-sentence?

PURPOSE: To return t if the sentence is empty, otherwise nil.

(define (end-of-sentence? sentence)
0####################0 ###### 0#0

(cond ((null sentence) t) sentence empty? -- > yes!

(t nil) otherwise nil

FUNCTION: word-or-lexical-category?

PURPOSE: To return t if the item is a word or lexical category, else nil*

(define (word-or-lexical-category? item)

(cond
((or (is-a-category item) (is-a-word item)) t) : t if lexical cat or word
(t nil) ; otherwise nil

FUNCTION: match
PURPOSE: To return t if iteel is in the lexical cat of item 2. *

** **

(define (match iteml itel2)

:#####################0##

(or (eq iteml item2) how about look-up???
fmember : member?

iteml iteml

(all-lexical-categories (a-list (root item2))): lax cats of item2

)Asa--.

- --~ a)

preproceas.l Wed Aug 19 05:13:11 1987

MODULE: PREPROCESS
PURPOSE: To preprocess the feature grammar fur efficiency.
OWNER: copywritm Mark T. Maybury, August, 1987.

FUNCTION: preprocess
PURPOSE: to preprocess the grammar.

(define (preprocess grammar)

(lot ((grammar (compile-grammar grammar)))
(make-possible-rules grammar grammar) : fird possible rules
(make-rules-with-handle grammar) find rules with handle
(make-rules-starting-with grammar)

FUNCTION: make-rules-starting-with
PUPPOSE: to provide an index into the grammar based on rhs rule.

(define (make-rules-starting-with grammar)

(cond
((null grammar) nil)
(t

(let' ((rule (head grammar))
(constituent (caaar (tail rule))))

(putprop
constituent
(cons rule (rules-starting constituent))
'starting)

(make-rules-starting-with (tail grammar))

(define (rules-starting category) (get category_'starting))

.4

compilegram.1 Wed Aug 19 05:06:07 1987

MODULE: COMPILE GRAMMAR MODULE
PURPOSE: To provide tools to compile the grammar prior to execution to

; give computational efficiency. This allows for grammatical

; felicity or perspicuity when writing rules.

Grammar originally of form:

grammar ==: rule*
rule ==< rule-name rule-syntax rule-semantics
rule-syntax ==: constituent*
constituent =-< : category (feature value)- >

compiling performs:
i. removes feature so unification hec- s positional

this is done for both computational efficiency as well as

convenience for use with dictionary.

;\---\--\\\---\--i--\\--\\--\\\---\--

FUNCTION: compile-grammar I
PURPOSE: to replace the global variable *grammar- with the compiled form.1

(define (compile-grammar grammar)

(setq -grammar' (mapcar 'remove-lables *grammar*)))

...

FUNCTION: remove-lables

PURPOSE: to remove the feature lables on the syntax of a rule.

(define (remove-lables rule)

(list

(rul--some rule)

(mapcar 'rsm-feature-lables (rule-syntax rule))

(rule-semantics rule)

FUNCTION: rem-feature-lables
PURPOSE: to remove the feature lables on a particular constituent.

(define (rem-feature-lables constituent)

(cons
(head constituent)
(mapcar 'cadt (tail constituent))

A

preprocess.l Wed Aug 19 05:03:44 1987

MODULE: PREPROCESS
PURPOSE: To preprocess the grammar to increase parser efficiency.
$Header: preprocess.l,v 1.1 86/12/15 01:11:06 mtm Exp $

FUNCTION: make-possible-rules
PURPOSE: To associate the possible rules for a particular lexical

* category.
INPUT: grammar
OUTPUT: Nothing explicitly, but side effect is possible rules for cats.*

(define (make-possible-rules grammar syntax-rules)

(cleac-possible-rules grammar)
(create-possible-rules grammar grammar)

FUNCTION: clear-possible-rules
PURPOSE: To clear the lexical categories of their property

"possible-rules", which may be dirty from previous runs.
; Maps the function clear-category on the rhs of each rule.

(define (clear-possible-rules rest-of-grammar)
:#6############6#############################
(cond
((null rest-of-grammar) nil)
(t (mapc 'clear-category ; clear

(mapcar 'car ; the first
(right-hand-side-of (rule-syntax (head rest-of-grammar))))) ; of items in rhs

(clear-possible-rules (tail rest-of-grammar)) ; fix tail

(define (clear-category symbol) ; don't waste time checking if a category

(setplist symbol nil)

FUNCTION: create-possible-rules
PURPOSE: To assign to each lexical category its possible rules.

(define (create-possible-rules grammar-rules grammar)
6######6#############6#########*#####################

(cond
((null grammar-rules) nil) ; no more rules? -> quit
(t ; else
(make-rule-possible-for-lexical-categories ; make possible for firsts

(head grammar-rules) . this rule
(first2 (first (first (right-hand-side-of ; first2 of category

(rule-syntax (head grammar-rules))))); of its handle
grammar

(create-possible-rules ; recurse on rest
(tail grammar-rules)
grammar

FUNCTION: make-rule-possible-for-lexical-categories
PURPOSE: To make the given rule a possible rule for all the lexical

categories in firsts.

...... 5 - -......... ,-d m bm --.- - l lm l l

preprocess.1 Wed Aug 19 05:03:45 1987

(define (meke-rule-possible-for-lexical-categories rule firsts)
;#####l#########################|#########################

(cond

((null firsts) nil) ; finished? -> quit
It (cond ; else

((is-a-category (head firsts)) ; head firsts lexical category?
(add-to-possible-rules rule (head firsts)); then rule is possible for

(make-rule-possible-for-lexical-categories ; recurse on rest

rule

(tail firsts)

FUNCTION: add-to-possible-rules
PURPOSE: To add the give rule to the provided category's possible rules.*

(define (add-to-possible-rules rule category)
;#############00##########e###################

(putprop

category
(cons rule (possible-rules category)) ; cons it to old possible rules
'possible-rules

FUNCTION: possible-rules
PURPOSE: To return the rules which a possible from the given category.

(define (possible-rules category) (get category 'possible-rules))
;#44**4#4*4#444444#444##4#4#44##4#4#4#####***##**9**e#44*48

FUNCTION: display-category

PURPOSE: To display the possible rules for this category, as well as *

rules with this category as a handle (a handle is the first
constituent on the right hand side of a rule).

(define (display-category category)
;####e##########0####%####$#######$##

(blank 2)
(print-list ' .--- ,category ----)) (blank 2)
(print-list '(possible rules ----) ,@(possible-rules category))) (terpri)
(print-list '(rules with handle -) ,@(rules-with-handla category)))

(blank 2)

FUNCTION: First2
PURPOSE: To return a list (containing no duplicates) of:

the result of first-auxl

+ all non-nil instances of
first-aux2 for the rho of all rules in the grammar
where category equals the lhs of the rule

INPUT: A category and a Grammar

OUTPUT: list

(define (first2 category grammar)

(delete-duplicates

(append (first-euxl category grammar nil)
(first-aux2-for-lhs-matching-rules category grammar)

3 preprocess.l wed Aug 19 05:03:45 1987

**

FUNCTION: first-aux2-for-lhs-eatching-rules
PURPOSE: To return a list of all non nil instances of doing:

for aach rule in the grammar (recurse)
if the category given equals the lhe of the rule

then return the result of first-aux2 on the rhs of rule

(define (first-aux2-for-lhs-matching-rules category rest-of-grammar)
999909* ***9**9**9999*9**999*#*9*9099999*909*99999*9999999*9*909*9999

(cond
((null rest-of-grammar) nil) finished? -> top
((eq category

(left-hand-side-of (rule-syntax (head rest-of-grammar))}) ; cat - lhs rule?
(append : add

(first-aux2 : first-aux2
(right-hand-side-of (rule-syntax (head rest-of-grammar))) : on next rule
graenr)

(first-eux2-for-lhs-matching-rules : tail recurse

category
(tail rest-of-grammar))

else tail recurse
(t (first-aux2-for-lhs-matching-rules category (tail rest-of-grammar)))

FUNCTION: first-ausl

PURPOSE: To return:

If the category is terminal then return a list containing the category *
otherwise, if the category has already been tried the return nil,
otherwise return a list of all non-nil instance of the following:
check each rule in the grammar:

* if the category is equal to the left hand side of the rule
* then if the right hand side of the rule is not empty *

then return the result of
; first-auxl of the first symbol in the rhs of the rule *

where you add the current category to already tried. *

else return a list containing the "empty" symbol

* else return nil

(define (first-auxl category grammar already-tried)
:9*9*9999*999999*9*99*999*99999*9999*999*9*99*999* *

(cond
((is-a-terminal category grammar) (list category))

((member category already-tried) nil)
(t (first-auxl-lhs-matches-category category grammar))

FUNCTION: first-auxl-lhs-matches-category

PURPOSE: To return a list of all non nil instances of doing:
check each rule in the grammar:

* if the category is equal to the left hand side of the rule
* then if the right hand side of the rule is not empty
* then return the result ofs

; first-auxl of the first symbol in the rhs of the rule
* where you add the current category to already tried.

else return a list containing the "empty" symbol

* else return nil

(define (first-auxl-lhs-matches-category category rest-of-grammar)
;*##***#*######9*9999999*9909**999999****#9*9*#*#9#*9**99#9#

(cond
((null rest-of-grammar) nil) finished? -> stop
((eq category

left-hand-side-of (rule-syntax (head rhst-of-gremer)fl(; cat = Ihs rule?
(cond

((not (null (right-hand-side-of

(rule-syntax (head rest-of-grammar))) rhe rule not empty?

(append
(first-auxl first-auxl

(first (right-hand-side-of

(rule-syntes (head re.t-of-gremmer)fl) let on nest rule

4 prop*ocess.l Wed Aug 19 05:03:46 1987

grammar
(appendi already-tried category))

(first-auxl-lhs-matchem-category and tail recurs*

category
(tail rest-of-grammar))

(t (append

(list (list 'empty-symbol) else empty-symbol
(first-auxl-lhs-matches-cateqory and tail recurse

category

(tail rest-of-grammar}}

(t (first-auxl-lhs-matches-category ;else tail recurse

category
(tail rest-of-grammar)

..

F PUNCTION: first-aux2
* PURPOSE: To take away some computational burden of first.

If rho is empty, return empty list.
; Otherwise

* if first-auxl of the first symbol in rho with tried nil, has "empty"
then return list containing:

* first-auxl of the first symbol in rhs with already-tried nil

; + first-aux2 of all but first symbol in rhs

else first-auxl of the first symbol in rhs with alread-tried nil.

.0*.

(define (first-aux2 rho grammar)

(cond

((null rhs) nil) ; rhs empty -> empty list
((member 'empty-symbol contains empty-symbol

(first-auxl (first rho) grammar nil)) first-auxl?

(append
(first-uxl (first rho) grammar nil) ; first-auxl head +
(first-aux2 (tail rho) grammar) first-Suo2 tail

(t (first-auxl (first rho) grammar nil)) : else first-auxl head

9999999999099999#9*9999999#99999999#99#99*999999999999999#999# 99999999#99999

;##99###9#######99####### HANDLES 9999999999999999999999999999999999999
:9999999999999999999999999999999999999,9999999999999999999 9999999999999999,9,

grammar assumed to include features in the form:

(rl [nt f v ... f v) tsl f v ... f vi ... isn f v . v)

(rn Ent f v ... f v] (sx f v f vj ... toy f v ... f v)

where nt - non-terminal, f - feature, v = feature value, si = symbol i
* ri = rule i

FUNCTION: make-handle-rules *

PURPOSE: To place the rules with this handle on the p-list of handle. *

(define (add-handle-rules handle rules-with-handle)

(putprop

handle
rules-with-handle

,rules-with-handle

Ia

It

5 preprocems.l Wad Aug 19 05:03:55 1987

..................................... . .

FUNCTION: make-rules-with-handle
PURPOSE: To index rules by their handle in the given grammar.

..

(define (make-rules-with-handle grammar)

make-cules-with-handle2 tall-handles grammar) grammar)

(define (make-rules-with-handle2 handles grammar)

1cond
((null handles) nil)

(t (add-handle-rules
(head handles)

(all-rules-with-handle (head handles) grammar;)

)make-rules-with-handle2 (tail handles) grammar)

.....

FUNCTION: rules-with-handle
PURPOSE: To return the rules which have the given category as the *

first constituent in the right hand side of the rule.

(define (rules-with-handle category) (got category 'rules-with-handle))

FUNCTION: all-handles
PURPOSE: To return all non-duplicate first constituents on the right

* hand side of the rules in the grammar.

.....................

(define (sll-handles grammar) (delete-duplicates (mpcar 'caadadr grammar)))
99999999**9999999999999*99 9*9*9*99*9998999*999999999999999999#999999998999#

(define (all-feature-handles grammar)
(delete-duplicates (all-feature-handles2 grammar)))

(define (all-feature-handles2 grammar)

cond
((null grammar) nil) first feature variable?
((variable? (second (second (rule-syntax (head grammar)))))
(cons ; add
(first (second (rule-syntax (head grammar.))) the cat of 1st on rhs
fall-feature-handles2 (tail grammar)) ; to rest of handles

(t else
(cons ; add
(second (second (rule-syntax (head grammar)))); first feature constant
(ell-feature-handles2 (tail grammar)) ; to rest of handles

..

FUNCTION: all-rules-with-handle *

PURPOSE: To return all rules in the grammar that have the given symbol

in the first position of the rhs of the rule.

.................................

(define (all-rules-with-handle symbol grammar)

(cond
((null grammar) nil)

((equal
symbol : is symbol the first
(first (second (rule-syntax (head grammar))))) ; category on rhs rule?

(cons (head grammar)

(all-rules-with-handle symbol (tail grammar))))

m •I

,- _ . _ nu.mdil .,d Ud nalllldll~llll ll'"d~ll~llI .3.l

S preprocss.1 Wed Aug 19 05:03:56 1987

(t (all-rules-,ith-handle symbol (tail grammarMf

verteaedqe.fat Wed Aug 19 05:04:21 1987

NODULE: VERTEX EDGE

PURPOSE: To provide vertex/edge accessing and alteration capabilities.

..

FUNCTION: add-vertex-to-chart

PURPOSE: To add given vertex to the chart which is a global variable.

(define (add-vertex-to-chart vertex chart)

(setq *chart* (appendl -chart* vertex))

:9*9*99*999*9 VERTEX/EDGE ACCESSING FUNCTIONS 99999*9999
9***99****9*99999*999999*9999*999999999*99*999*9999999*99999*999999999999999I
99**9999*9*999**9999*99*9*999999*999999 9*9*999999999999999999999999999999999

values stored on p-lists

edge has the form < left-vertex, right-vertex, category, needed, contents
(defmecro.............. left-vertex-of.(edge).I(get.edge.'lef

(defmacro left-vertex-of (edge) '(get ,edge 'lft-vertex))
(deomacro right-vertox-of (edge) '(got ,edge 'right-vertex))

(defmacro category-of (edge) '(get ,edge 'category))
(defeacro needed-of (edge) '(get ,edge 'noded))
(defeacro contents-of (edge) '(get ,edge 'contents))
(defiecro rule-of (edge) '(get edge 'rule))

(define (whole-edge edge)

(list (left-vertex-of edge) (right-vertex-of edge) (category-of edge)

(needed-of edge) (contents-of edge) (rule-of edge))

nice printout of display

(define (displsy-edge edge)

(blank 2)

(print-list (list .---- edge '---. (blank 2)
(print-list '(left vertex --- (left-vertex-of edge))) (terpri)
(print-list '(right vertex -- (right-vertex-of edge))) (terpri)
(print-list '(category ----- > (category-of edge))) (terpri)
(print-list '(needs --------- > (needed-of edge))) (terpri)
(print-list '(contents ----- ,(contents-of edge))) (terpri)

(print-list '(rule applied -- > (rule-of edge))) (terpri)
(blank 1)

(define (incomplete? edge) (needed-of edge)) ; if needed of edge is

:9**9**99***9*999*99*9999999*99*9*99999999*9 : non nil then incomplete

(define (complete? edge) (not (incomplete? edge))) : if needed of edge is
:99*999*999*9*9999*99*99*999999*99999999999*999999

equivalent to -- > (not (needed-of edge))) : nil then finished

vertex has the form < edges-in, edges-out >
..l

(defeecro edgos-in (vortex) '(got vortex 'edges-in))
(defacro edges-out (vortex) '(get ,vertex 'edges-out))
(defeacro whole-vertex (vertex) '(list (edges-in vertex) (edges-out ,vertex)))

FUNCTION: displey-vertex-td
PURPOSE: To display the vertex on the chart for a top down parse.

(define)display-vertex-td vertex) * **************

9****9*9**9*9 9 9 * ** *99 9

I - -' I

2 Wertes edgefeast Wed Aug 19 05:04:22 1987

(blank 2)
(print-list - ,verte- ----)) (blank 2)
(print-list '(edger in --- ,0(edges-in vertex)) (terrri)
(print-list '(edges out -- > ,8(edges-out vertex)))

(print-list '(proposed --- > ,)cotegory-liet (edges-out vertex))))
(blank 2)

(define (categrF list edge-list) : returns the cateagries in edge list
:9*999*90*89*998*99999909*9899##

(eapcar 'category-of edge-list))

FUNCTION: display-vertex-bu *
PURPOSE: To display the vertex on the chart for a bottom up parse.

*** **

(define (display-vertex-bu vertex) NB diverse from top down version
*##9*999*8999*98*999999988*991*#9*
(blank 2)

(print-list ' .--- vertex ----)) (blank 2)

(print-list '(edges in --- > ,@(edges-in vertex))) (terpri)
(print-list '(edges out --) @(edges-out vertex))) (terpri)
(print-list '(rules proposed ---) ,@(rules-proposed-at vertex))) (terpri)
(print-list '(real rules proposed --o ,@(real-rules-proposed-at vertex)l
(blank 2)

FUNCTION: rules-proposed-at/real-rules-proposed-at
PURPOSE: To return the rules which have been proposed at the vertex

or to return the real rules proposed (ie with actual varaibles
used).

(define (rules-proposed-at vertex) (get vertex 'rules-proposed))
;9#*##99*9#99#9*#8###99*9#*##**9*9#9#*##*#9#9999#####9#*99#99999

(define (real-rules-proposed-at vertex) (get vertex 'real-rules-proposed))
8999999*989999*8988989*8e*999*889**9*99899888#88*8898889899999**8##8*888#

;##############0##0#####

;*########### VERTEX/EDGE ALTERATION FUNCTIONS #########

..
#

(define (add-edge-to-chart edge chart track-level)

(add-edge-out edge (left-vertex-of edge) track-level)
(add-edge-in edge (right-vertex-of edge) track-level)

(define (add-edge-out edge vertex track-level)
:9999999999*999999*69999999*9*999999998*999999

(putprop
vortex
(appendl (edges-out vertex) edge) add edge to and of edges-out
'edges-out

(define (add-edge-in edge vertex track-level)

(putprop
vertex
(appendl (edges-in vertex) edge) add edge to end of edges-in
'edges-in

FUNCTION: new-vertex 0.

PURPOSE: To create a new identifier for the vertex. Use built-in 0

3 vortex_*dg*tafat Wed Aug 19 05:04:22 1987

function nowaym which returns new symbols with incrementally
higher postscripts (I. it generate vertexO, then vertexi, etc.(5

(defeecro new-vortex (C

'(clear-vertex (newsym 'vertex)))

(define (cloar-vertex vertex)

(setplist vertex nil)

vertex return name

(dofeecro new-vortex2 (C) alterate form of new vertex
;0 4 lll #t## #4###| 0

'(progn
(let ((now-vertex (newsym 'vertex)))

(sotptist new-vertex nil)

new-vertex

****** **

FUNCTION: create-edge
''P¢$.. To create a new identifier for the edge, and associate the

components with it. *

ARGUMENTS: < left-vortex, right-vertex, category, needed, contents •
rule and tracking level >

NOTE: While this macro is somewhat unreadable (with lots of cars and
cdrs), the gained efficiency is worthwhile since this is one of
most accessed routines in the program.

****0*550*****O5O****550.54**55555*5ss********55.********ssssssss* *5555*

(defoacro create-edge (args)
999999999999999999999999999999*999999999999999999999999999 9999#9999999999999999999

*(progn

(let ((new-edge (nowsym 'edge)))

(setplist new-edge
(list 'teft-vertex (car ,Sags)

'right-vertex (cadr args)
'category (caddr ,args)

'needed)cadddr args)
'contents (caddddr ,args)
'rule (cedddddr ,args)

new-edge return now edge value

.!' "

unification.1 wed Aug 19 05:04:48 1987

MODULE: UNIFICATION + BINDING

PURPOSE: To provide support routines for feature manipulation.

FUNCTION: my-unify *
PURPOSE: To attempt to unify two expressions.

; If the two expressions are identical then they unify.
* Otherwise, return a set of variable bindings that make the

* two expressions identical when the values for the variables
* are substituted into both expressions.

INPUT: two expressions
OUTPUT: t if equivalent, list of variable bindings that make thee *

* equivalent, or nil If they are not and cannot be made equal.

NB: Unification presupposes that no occurances of typographically *

equal variables are shared between expressions.

(define (my-unify a b)
(cond
((or (atom a) (atom b)) , not a proposition?
(let* ((templ (cond ((atom a) a) (t b)) ; exchange if need be

(temp (cond ((atom a) b) (t a()) so a is atomic
(a templ)
(b tamp))

(cond
((eq a b) (list '(, k))) , a-b -> Wk
((variable? a(, is a variable?
(cond . yes
((and (listp b) (meaber a b)) nil) : a is in list b -> fail
(t (list (list a b(((, else -> ((a b))

* "a is bound to b"

((variable? b) is b variable? -)
(list (list b a)) ((b a))

"b is bound to a"
(t nil) else fail

(t . otherwise not a proposition
(let ((head-bindings (my-unify (head a) (head b))))
(cond
((not head-bindings) nil) . head-bindings nil -> file
(t
(let* ((new-a-tail (my-bind tail a head-bindings)(

(new-b-tail (my-bind tail h head-bindings()
(tail-bindings (my-unify new-a-tail new-b-tail(()

(cond
(tail-bindings , tail-bindings ok?
(my-compose head-bindings tail-bindings)) : -> compose

(t nil) else fail

FUNCTION: variable?
PURPOSE% To dotseine w~hether the given item is a variable.

(defmacro variable? (item) '(numberp ,item))

...

FUNCTION: varieble-name and variable-velue

PURPOSE: To return the name or value of the variable in the binding-list
4

(define (variable-naue binding-list) (first binding-list((

2 umificatio.i Wed Aug 19 05:04:49 1987

(define (variable-value binding-list) (second binding-list))

.... ..

FUNCTION: bind
PURPOSE: To replace any variable in expression by its value as given

in the bindings list, if there is one.
INPUT: expression end bindings list.
OUTPUT:

(define (y-bind expression bindings-list)

(cond
((null bindings-list) expression) finished -) expression
((variable-value (head bindings-list)) : if first bind has a value

(my-bind recurse on tail
(replaca-occurances : replace all occurances

expression , of fir.t va-Mile in

(heed bindings-list)) , bindings list with value

(tail bindings-list) rest of bindings

(t (my-bind expression (tail bindings-list))) : if no varible value

go to next binding

FUNCTION: replace-occurances
PURPOSE: To replace the occurancas of the variable (which is given in

the binding-list with its value) with the value of the *

variable, if it has a value.

(define (replace-occurances expression binding-list)

(cond
((null expression) nil) examined whole expression?
((eq (head expression) next item is same as

)variable-naae binding-list)) : variable name?
(cons : then replace it

(variable-value binding-list) . with its value

(replace-occurances ; and replace on tail
(tail expression)
binding-list)

(t (cons : else
(head expression) save the next item as is

(replace-occurances : replacs on tail

(tail expression)

binding-list))

FUNCTION: my-compose
PURPOSE: To replace any variables on the rhs of an = in the first *

binding list with their values from the second binding list.
INPUT: *
OUTPUT: The result of appending the above with a list of any *

bindings in the second binding list involving variables not
occuring in the first binding list. *

(define (my-compose binding-listl binding-list2)

(append

(my-compose2 binding-listl binding-list2)
(variables-inZ-notinl , bindings in liet2

(variable-list binding-listl) which have variables
binding-list2 . not occur'ng in listl

(define (variable-list binding-list)

(append (mapcar 'car binding-list) lhs of rules
(mapcar 'is-a-variable if variables then

(mapcar Icaddr binding-list) : ths also

3 umificatio.l Wed Aug 19 05:04:49 1987

(define (my-compose2 binding-listl binding-list2)
(cond
((null binding-list2) binding-listl) : finished? -> result
((variable-value (head binding-list2)) variable has a value?
(my-compose2 ; recurse on tail

(replace-rhs-occurances replace all occurances
binding-listl of first variable in rhs of
(head binding-list2)) , bindings list with value

(tail binding-list2) rest of binding-list2

(t (my-compose2 binding-listl (tail binding-list2))) ; else if no variable value
then next binding

FUNCTION: variables-in2-notinl
PURPOSE: To return the sub-list of bindings in list2 which do not have *

variables occuring in listl.

(define (variables-in2-notinl variables-in-listl list2
(cond
((null list2) nil)
((member (variable-name (head list2l) next variable in list2

variables-in-listl) - a variable in listl?
(variablea-in2-notinl recurse

variables-in-listl same variables
(tail list2)) forget first

(t (cons else
(head list2) keep head
(variables-in2-notinl filter tail

variables-in-listl
(tail list2)

FUNCTION: replace-rhs-occurances
PURPOSE: To replace the occuranc*es of the variable (which is given in

the parameter "binding" along with its value) on the rhs of
* bindings in the binding list with the value of the variable,
; if it has a value.

(define (replace-rhs-occurances bindings-list binding)
(cond
((null bindings-list) nil) no more binding-list -) stop
((eq (second (head bindings-list) : next item rhs is same as

(variable-name binding()) variable name?
(cons then replace it with
(list a new binding:
(first (head bindings-list)) , - same ihs variable
(variable-value binding)) , - its value

(replace-rhs-occurances and replace-rho on tail
(tail bindings-list)
binding)

(t (cons else
(heed bindings-list) save the next item as is
(replace-rhs-occurences replace-rhs on tail

(tail bindings-list)
binding))

:___ ,.'__

featureparss.l Wed Aug 19 05:05:11 1987

MODULE: FEATURE PARSES

PURPOSE: To provide support for retrieving parses with features.

... ...

FUNCTION: output-trees-features
PURPOSE: To print out a tree listing of the parsings for feature parse. *

(define (output-trees-features successful-edges)

(let ((trees (parse-tree-feature-list successful-edges)))
(blank 2)
(iapc 'treeprint trees)

FUNCTION: output-parses-features
PURPOSE: To print out a nice listing of the parsings for feature parse. a

(define (outpu
t
-parses-features successful-edges)

*8****8**88*8*8**8**8*8*8***888*8*8***lt*it*at*t*

(let ((trees (parse-tree-feaLure-list successful-edges)))
(blank 2)

(princ (eval '(pp .trees)))

FUNCTION: parse-tree-feature-list
PURPOSE: To translate a list of successful edges with their bindings

* into parse trees.

(define (parse-tree-feature-list successful-edges)

(mapcar 'make-tree-features successful-edges)

FUNCTION: make-tree-features

PURPOSE: To build a complete tree structure from an edge by collecting *

* all bindings for that edge, then calling make-tree on all
* the included edges.

(define (make-tree-features edge-binding-list) : parameter consists of:

(let ((edge (first edge-binding-list)) - edge lot
(binding-list (second edge-binding-list))) : - binding 2nd

(cond A
((is-a-category (first (category-of edge))) : lesical edge?

(list : list of

(instantiate (category-of edge) binding-list) bindings of edge

(list (contents-of edge))) semantics or word

(t
(cons
(instantiate (category-of edge) binding-list) bindings of edge
(mapcar 'make-tree-features (contents-of edge)) trees of all
(mapear 'make-tree-features : trees of all

(add-binds-all contained edges
(contents-of edge) (tail binding-list))) with current bindings

FUNCTION: add-binds-all
PURPOSE: to add the given bindings to all items on the edge-list. (

- e-_

2 featurepaersee.l Wed Aug 19 05:05:12 1987

(define (add-binds-all edge-list bindings)

(cond
((null edge-list) nil)
(t
(cons
(add-binds (head edge-list) bindings)
(add-binds-all (tail edge-list) bindings)

FUNCTION: add-binds
PURPOSE: to add given bindings to the binding list of edge-binds.

(define (add-binds edge-binds bindings-to-add)---

(list
(first edge-binds) the edge
(append (second edge-binds) bindings-to-add) bindings + bindings to add

FUNCTION: find-feature-parses
PURPOSE: To find all the parses from the chart by finding all the *

; complete parses starting with edges from start.

(define (find-feature-parses ctartsymbol chart)

(let ((start (first chart)) start - first vertex in chart
(finish (car (iast chart)))) finish - last vertex in chart

(find-all-feature-parses
startsymbol
finish
(edges-out start) examine the edges from start

FUNCTION: find-all-feature-parses
PURPOSE: To recurse on the list of all edges from the start vertex and

test to see if they meet the three conditions required to be
* a legal parse:
* 1 -- edge out must have start symbol label.
* 2 -- the right oertes of edge must be the finish vertex.

3 -- there must be no more required constituents.
OUTPUT: Return the list of edges and their bindings which represent

* the valid parses in the chart.

(define (find-all-feature-parses startsymbol finish edges-out-of-start)

(cond
((null edges-out-of-start) nil) finished -> quit
((and parse good if:

(eq (first 1 first of
(category-of (head edges-out-of-start))) 1 cat of edge is start

startsymbol; symbol and
(eq (right-vertex-of (head edges-out-of-start)) : 2 right vertex is

finish) : last vertex and
(eq (needed-of (head edges-out-of-start)) : 3 no needed constituents

nil))
(cons

(list
(head edges-out-of-start) : kee:, head of list with
(contents-of (head edges-out-of-start)) : its bindings

(find-all-feature-parses examine tail
startsymbol
finish
(tail edges-out-of-start))

(It (find-all-feature-parses else examine tail

4

• a

3 featuro_parsoa.l Wed A.1 19 05:05;13 1987

startsymbol
finish
(tail edges-out-of-start))

FUNCTION: collect-all-bindings
PURPOSE: To collect all the bindings of en edge which are held

implicitly in its contents field, and explicitly in its
category.

(define (collect-all-bindings edge)
(cond
((is-s-category (category-of edge)) nil) edge lexical? -> nil
(t (mapcar append

'collect-edge-binding collect-all-bindings
(contents-of edge)) for each pair

<contained-edge bindings>
in edge contents

(define collect-edge-binding edge-binding)
(append append

(collect-all-bindings (first edge-binding)) bindings for edge
(second edge-binding) bindings of edge

FUNCTION: find-non-variable-value
PURPOSE: To recover the ultimate "real" value for a feature variable.

(define (find-non-variable-value feature-variable binding-list)
(let ((value (find-value feature-variable binding-list))) ; get feature value
(cond
((null valuel feature-variable) no vslue? -> nil
((not (variable? value)) value) not variable' -> value
(t (find-non-variable-value value binding-list)) else iecurse

FUNCTION: find-value
PURPOSE: To find the value of the given variable in the binding-list

* or nil if it's not in the list.

(define (find-value variable binding-list)
cond
((null binding-list) nil) :empty binding-list? -> nil
((eg variable (first (head binding-list))) : variable matches?
(second (head binding-list))) -> value

(t (find-value variable (tail binding-list))) elso look at tail

FUNCTION: instantiate
PURPOSE: To replace any variable in category by a non-variable value.

; Instantiate deals with both lists and atoms, allowing
P flesibility when calling.

(define (Instantiate category binding-list)
(Cond
((null category) nil) finished? -> nil
(atom category) if just atom sent
(cond
((variable? category) variable?-)
(find-non-variable-value category binding-list)) give value

(t category)) else return

(I else

.4
t"

[. , |~omd gndllli~m~lmnnil llniII llli

iI

4 featureparses.1 Wed Aug 19 05:05:13 1987

(cons construct a list
(instantiate (head category) binding-list) keep head
(instantiate (tail category) binding-list)) instantiate tail

featureprocess.faet Wed Aug 19 05:05:34 1987

MODULE: FEATURE PROCESS

PURPOSE: To provide support for processing edges with features. I

**

FUNCTION: process-features
PURPOSE: To process an edge. If edge is incomplete, process using

processl. If edge is complete, process using process2. *

* Processl and process2 described in detail below. *

NB: This is an updated version of process with features. (12/3/86)

(define (process-features edge track-level)

(cond
((incomplete? edge) : if edge is incomplete

(processl-f edge
(complete-edges (edges-out (right-vertex-Of edge)))

track-level)

((complete? edge) : if edge is complete

(process2-f edge
(incomplete-edges (edges-in (left-vertex-Of edge)))

track-level)

FUNCTION: processl-f

PURPOSE:

************ ***

(define (processl-f edge complete-edges track-level)

(cond

((null complete-edges) nil) finished -- > stop

(t
(let- ((complete (head complete-edges))

(needs (needed-of edge))
(bindings (my-unify (first needs) (category-of complete})))

(cond

(bindings : unification success?

(cond
((equal bindings '((o k))) no bindings?
(my-push add new edge to agenda

(create-edge
(list
(left-vertex-of edge) loft vertex

(right-vertex-of complete) right vertex

(category-of edge) category
(tail needs) needed

(appendl (contents-of edge) contents edge +

(list complete)) complete edge

(rule-of edge) rule of proposing edge
track-level tracking information

*agenda-

else save bindings

(t and instantiate

(my-push : add new edge to agenda

(create-edge
(list

(left-vertex-of edge) left vertex
(right-vertex-of complete) right vertex

(instantiate (category-of edge) bindings) category instantiated
with bindings

(instantiate (tail needs) bindings) needed instantiated
with bindings

(appendl (contents-of edge) : contents edge +
(list complete : complete edge

bindings)) w/ inc/comp bindings

(rule-of edge) rule of proposing edge

feature proceae.fast Wed Aug 19 0050:35 1987

track-level tracking information

eagends

end COND
end of let

(processl-f edge (tail complete-edges) track-level) process tail

FUNCTION: process2-f

PURPOSE:

(define (process2-f edge incomplete-edges track-level)

(cond
((null incomplete-edges) nil) finished -- > stop

(t
(let* ((incomplete (head incomplete-edges))

(needs (needed-of incomplete))

(bindings (my-unify (first needs) (category-of edge))))
(cond

(bindings ; my-unify successful?
(cond
((equal bindings '((o k))) no bindings?

(my-push ; add new edge to agenda
(create-edge

list
(left-vertex-of incomplete) left vertex
(right-vertex-of edge) right vertex
(category-of incomplete) category
(tail (needed-of incomplete)) needed

(appendl (contents-of incomplete) : contents incomplete
(list edge)) ; end edge

(rule-of incomplete) rule of proposing edge

track-level : tracking information

-agenda*

else save bindings
(t a end instantiate

(my-push add new edge to agenda
(create-edge

(list

(left-vertex-of incomplete) : left vertex
(right-vertex-of edge) right vertex
(instantiate (category-of incomplete) bindings) category

with bindings
(instantiate (tail (needed-of incomplete)) needed

bindings) with bindings

(appendl (contents-of incomplete) : contents incomplete

(list edge bindings)) + edge symbol
(rule-of incomplete) rule of proposing edge
track-level : tracking information

-agenda*

end of let

(process2-f edge (tail incomplete-edges) track-level) process t~il

(define (process2-fl edge incomplete-edges track-level)

(cond
((null incomplete-edges) nil) : finished --) stop
((eq (first (needed-of (head incomplete-edges))) : first needed incomplete

(category-of edge)) eq cat of edge?

(my-push add new edge to agenda
(create-edge

(list

(left-vertex-of (heed incomplete-edges)) left vertex

-df -..... ~ . d-

3 feature proces8afeat wed Aug 19 05:05:36 1987

(right-vortex-of edge) right vertex
(category-of (head incomplete-edges)) category
(tail (needed-of (head incomplete-edges))) nseded
(appendl (contents-of (head incomplete-edges)) contents incomplete

edge) + edge symbol

(rule-of (head incouplete-edges)) rule of proposing edge

track-level tracking information

-agenda-)
(procese2-fl edge (tail incomplete-edges) track-level); process tail

(t else
(process2-fl edge (tail incomplete-edges) track-level); process tail

IKI

SUCTION ii

REALISATION MODULE

--- " w E"---"---- --- u

reallatiom.1 Sun Aug 30 15:27:52 1987

NODULE: REALIZATION
PUPOSE: To raliz, a give syntactic tree structure using morphological

synthesis.

OWNER: copywrite Nark T. Naybury, Nay, 1967.

--\

FUNCTION: realize

PURPOSE: To linearize a syntax tree to a surface string of words by
recurslng down the tree until it reaches the leaves, at which I
point a constituent is realized.

(define (realise syntax-tree)

(mopcar 'realito-constituent (linearize syntax-tree))

FUNCTION: linearize
PUNCOS: To linearie a syntax tree to a surface string of words with

their features by recursing down the tree until reaching the
loaves, at which point a root and features in returned.

(define (linearize syntax-tree)

(cond
((null syntax-tree) nil) completed realisation?
((is-a-category (first (head syntax-tree))) if next item terminal
(list
(append
(caar (tail syntax-tree)(

(head syntax-tree)})

(t

(apply 'append
(napcar 'linearizs (tail syntax-tree))) else realise the beginning

FUNCTION: realize-constituent

PURPOSE: To call the morphological syntesizer to shape the output

in accordance with the features of the word.

(define (realise-constituent word-features)

(morph-syn

(head word-features) word
(list (tail word-features)) feature list

)i

I I
_ _

saerhym.1 Sun Aug 30 15:28:06 1957

MODULE: MORPHOLOGICAL SYNTHEIZER
PURPOSE: To synthesize the proper surface strture of a root word

given the proper features (eq plur, post, 3p, etc).
OWNER: copywrite Hark T. Maybury. May, 1967.

NO: Assume* dictionary format, entry - <syntax semantics realization)
described in -/lisp/dictlonary/dictionaryeaocro.l.

FUNCTION: morph-syn
PURPOSE: top level routine

(define (morph-syn root entry)

cond
(inounp entry) if noun
(morph-syn-n root entry))

((verb? (word-type entry)) else if verb
(morph-syn-v root
(list (cons 'verb (head entry)) (tail entry))))

))sdjp entry) *Iese if adjective
(morph-syn-adj root entry))

((namep entry) eIse if proper noun?
)morph-ayn..name root))

(t root) else return given

FUNCTION: look-for-irregulars
PURPOSE: To look up s given root word with features to determine if it

has an irregular form before automatic morphological synthesis.

(deine (look-for-irregulars root entry)
(let) (irreg-entries (a-list root)))
cond
((null irreg-entries)) nil if no irreg-entries
((head (matches entry irrog-entries)() check for matches - return

just first realization
UPDATE this to say
choose randomly or intelligently

FUNCTION: matches
PURPOSE: Takes listl and returns the items that match it in list 2.

List2 is a description of form (syntax semantics realivation>

(define (matches listl list2)
(cond
((null list?))
)(my-unify listl (syntax (head list?))) :if syntax of first item matches

(cons
(realization (heed list?)) :save it and
(matches listl (tail list?))) recurs* on tail

(t (matches listl (tail list?)) else recursa on tail

FUNICTION: op-n-
PURPOSE: To synthesize the proper form of a noun given root and featu--.i

(define (morph-syn-n rootentry)

(cond
((and (eq (noun-type entry) 'count)

(eq (noun-count entry) 'plur))
(make-n-plural root))

(t root)

FUNCTION: morph-syn-vI I
PURPOSE: To synthesis* th. proper form of a verb given root and features.I

-- - -- - - -- - - -- - - -- - -- - - -- - - -- - - -- - - -------------

2 Merwhaym.i Sun Aug 30 15:28:06 1967

(define (morph-syn-v toot entry)

fcond
((member (verb-type entry) '(copula aux model do think-know heve-vi)
roo t) ;return root if irregular
((eq (verb-in; entry) 'in;) ;present participle?
make-v-iog root))

((and (eq (verb-count entry) 'elngip) 3rd person singular?
(eq (verb-tons* entry) 'proe))

(make-v-3ps root))
((eq (verb-tesse entry) 'past) past tense?

(meke-v-peet root)))t rot) ;else return root

FUNCTION: morph-syn-adj
PURPOSE: To synthesis* the proper form of a edj given root end entry.---------------------------------------

(define (morph-eyn-adj root entry)

cond
((eq)sdi-typo entry) 'comparative) (add root 'or))
((eq (adl-type entry) 'superletive) (add root 'est))
(t root)

FUNCTION: morph-syn-nome
PURPOSE: To synthesise the proper form of a name given root (cepitalize)

(define)morph-syn-nams root entry)

(capits2ise root)

FUNCTION: add
PURPOSE: To add or concatenate a given ending to a word.

)define (add word ending)

(cond
(null word)) *no word -> don't add

((null ending)) ;no ending -> nil
(t (implode (append (explode word) (explode ending)))); otherwise add it on

FUNCTION: make-n-pluralI
PURPOSE To add the appropriate morphological ending to pluralize a noun.[

(define (make-n-plural root)

cond
((eq (lest (explode root)) 'a) (add root 'e8))
(t (add root 'a))

FUNCTION: meke-v-3ps
PURPOSE: To add the appropriate morphological ending to make verb 3ps.

(define (make--ps root) (add root 's))

FUNCTION: make-v-in;
PURPOSE: To add the appropriate morphological ending to make verb pest.

(define (make-v-in; root) (add root 'in;))

lie -> lying, fly -> flying, take -> taking

FUNCTION: ake-v-peat
PURPOSE: To add the appropriate morphological ending to make verb past.

Aft -a

3 uerbasyu.1 Sun Aug 30 15:20:07 1987

(define (make-v-past root) (add root 'ed))

. ..

,

surface-form.1 Sun Aug 30 15:28:32 1967

MODULE: SURFACE FORM
PURPOSE: To present syntactic generator output in a clean surface form.
OWNER: copywrite Mark T. Maybury, June, 1967.

FUNCTION: surface-form
PURPOSE: to produce a sentence with proper othographical presentation

following punctuation rules and spacing conventions.

(define (surface-fore lex-punct-list(

(output-surface-fore
(append
(list (capitalize (firat ltx-punct-list)(
(tail lex-punct-list(
(1period)

FUNCTION: output-surface-form
PURPOSE: to output a sentence with proper othographical presentation

following punctuation rules and spacing conventions.

(define (output-surface-form lex-punct-list(

(cond
((null lex-punct-Lst) (sg N)) move to new line
((punctuation? (second lex-punct-list((next item punctuation
(princ (first lox-punct-ILst((output next word
(print-punct (second lex-punct-list((output punctuation
(princ " " output space
(output-surface-form
(tail (tail lex-punct-list))) ;recurs. on rest

(t
(princ (first lex-punct-list((output next word
jprinc " " output space
(output-surface-form (tail lex-punct-ILst((recurse on rest

FUNCTION: capitalize
PURPOSE: to convert the first letter of the given word into a capital.

(define (capitalize word)

(implode (cons (capital word) (tail (explode word((((

FUNCTION: capitalI
PURPOSE: to return the first letter of word capitalized (if not alreadv.j

(define (capital word)

(cond
(((- (car (substringn word 1)) 90) capital letter? 65 -= -od 10
(car (explode word))) return it unchanged

(t (ascii (- (car (substringn word 1)) 32))) else capitalize first letter

FUNCTION: print-punct

PURPOSE: to print the proper punctuation given a keyword.

(define (punctuation?_item)

(member item '(comma period colon question-mark exclamation-point(((

- - -

2 OurfcfS or- S~E~ uD Aug 30 15:26:33 1967

(define (print-Punct Punct)

teend
((eq punct 'Comes) (Prific '\,f)

((eq punct 'period) (p r ic '\.()

((eq pUnet 'colon) (Princ :) ')
((,q punct 'q~to-ar k) (prifiC '

((eq punct .5xcleation-point)
(Prific')

SECTION 12

KNOWLEDGE SOURCES

SECTION 12.1

MONTAGUE GRAMMAR

a!

Kontaquegraimuar Sun Aug 30 15:31:14 1987

.......... ...

MONTAGUE SEMANTIC GRAMMAR

IPhrase structures arm grouped by classification. Each grammar rule is

followed by a English example in the Neuropsychology domain.

GRAMMARSYNTAX

grammar -> <rule>-
rule -> <rule name) <syntax> <semantics>

* rule name -> (string of characters representing rule,
* syntax -> (category>* where head is lhs rule and tail is rhs rule

head must be a nonk-terminal
* category -) (grammar-symbol> <feature,"
* grammar-symbol -> eg s, vp, np, noun, empty-symbol

feature -> (feature-constant) I <f*AtLre-variablo>
* semantics -) (lambda-calculus-first-order-logical-form>

F (sotq -grammar- 1

DECLARATIVE STATEMENTS, WH AND YES/NO QUESTIONSI

Declarative sentencesI

sdoc>->np+vp ((o (type declarative) (voice active))
(np (count 1) (person 2) (gender 4))
(vp (count 1) (person 2) (tense 3) (voice activel))

(some (a*) (np (vp _&M)

"The patient reads slowly"

"The doctor ir _tigates the patient's left hemisphere."

NB: There are theoretical problems with the event variable.
Unfortunately, not all verbs are single events and can refer
to continous or repeated action. eg "The man rented the car for a week."

odec>->np+vp~pes> (io (type declarative) (voice passive))
(np (count 1) (person 2) (gender 4))
tvp (count 1) (person 2) (tense 3) (voice passive)])

(some (_a) (np (vp _e(()

"the hemisphere is contained in the brain"

Connected SentencesI

s->s+conn+s jjs (type 1) (voice 2()
[s (type 1) (voice 2(]
[connective)
(o (type 3) (voice W() (some (-@((and s 0))

"The family is concerned because the petient hasAloheimer's disease."

SIMPLE NOUN PHRASESI

np-)dot+nl ()np (count 1) (per-n p3) (gender 71]

(determsiner (typeo 2) (=ount 1) Ikind)3) (extenrion
(negativ'e 5) (number 6))

[nl (type 1) (gender 7)1
(determsiner n1)

"these men" "a doctor" "every patient"

np->num+nl (tnp (count 1) (person p3) (gender 2))
(number (type 1)) (01 (type 1) (gender 2()

(number nl((

np->proper-noun (tsp (count 1) (person p3) (gender 2(1
(proper-noun (count 1) (gender 2(1)

(L) _P) (_P proper-noun))
"Michelle"

2 osteque.gtaimmar Sun Aug 30 15:31:14 1987

nv- eass-noun (Inp (count sing3p) (person p
3
) (gander 2)]

Inoun (count mass) (person sing3p) (gender 2M1
(L (-P) (-P noun))

' patients,

Inp->noun+mase (np (count sing3p) (person p
3
) (gender 2))

(noun (count 4) (type 5) (gander 6)
[noun (count mase) (person sing3p) (gender 2)1)

(L i)P) (_P noun)))

Inp->pronoun ((np (count 1) (person 2) (gender 3)]
(pronoun (type poe) (count 1) (kind subj) (person 2) (gender 3)1)

-o--h (L (_P) (_P pronoun))

np->np~pp (np (count 1) (person 2) (gender 3))
(np (count 1) (person 2) (gender 3)) Epp])

(L (_a) (and (nI _x) (pp _x)))

"the result of the exae

np->np:np ((np (count 1) (person 2) (gender 3)]
lnp (count 1) (person 2) (gender 3(1
(colonj
Enp (count 4) (person 5) (gender 6)))

(L (_P((-P np((

"three parts: the hemmer, anvil, end stirrup"

np->np-comma-np UInp (count plur) (person 2) (gender 3)1
(np (count 1) (person 2) (gender 3(1
(coma]
lnp (count 4) (person 5) (gender 6Mj

(L (-P) (-P np)

"the hammer, the anvil"

nP->np-conj-np)(nP (count plur) (person 2) (gender 3)) NB: count plur
(np (count 1) (person 2) (gender 3)1
(conjunction (type 4)1
(np (count 5) (person 4) (gender 711)
(L ((P np))
ge"n -a, b an~d c" or "b end c" but not "a, b, and c"

"the anvil end the stirrup"

np->np+rel ((np (count 11 (person p3) (gender 2))
Inp (count 1) (person P3) (gender 2))
[comms)
(rel (type 3)) which, therefore, for example
(comma]) (np rel))

'the patient who injected the poison"

Not sure if this is a theoretical linguistic insight

or a hack below but it is efficient:

rel-,connoctiv* t((el (type connective)) [connective)) (conne-ti-"

"which"

rel-)connoctiv*2 ((rel (type 1))
(connective (type IIJ
(connective (type 1)1 connctil.

*"for example"

19OUN GROUPSI

nl->noun (nl (type 1) (gender 3))
(noun (count 2) (type 1) (gender 3(1) (noun)

*"alcohol"

nl->noun+noun (mlI (type 1) (gender 3(

MINO

S Koateuo.grmmar Sun Aug 30 15:31:15 1987

[noun (count 4) (type 5) (gender 6)
(noun (count 2) (type 1) (gender 3)1 (noun))

S"hemisphere region"

nl->adjp<attr>+nl (Inl (type 1) (gender 2)1
ladjp (type attributive)] [nl (type 1) (gender 2)
ML (_z((and (sdjp _a] (ni _K]])

"slow recognition"

nl->adjp(sup>+nl (Ini (type 1) (gender 2)]

[adJp (type superlative)) [ni (type 1) (gender 21])
(L (_X) (and (adjp _x) (nl _x)))

"bigger feet"

..u

PREPOSITIONAL PHRASES I

pp->prep+np (Epp]
[preposition] (np (count 1) (person 2) (gender 3)])

(preposition np))

*for comprehension"

pp->prep+np ([ppi

(preposition (type 1)) (preposition (type 1)]
[np (count 2) (person 3) (gender 4()

(preposition np))

; "located in the left occipital lobe"

pp->prep+number ([pp]
[preposition] (number (type 1)])

(proposition np))

(a test value) "of one"

....................-...........-=...-.........-------------------------------

ADJECTIVE PHRASES I

adjp->adjective ((adjp (type 1)]

[adjective (type 1)])
adjective]

* "ill"

adjp->adj+adjp ((adjp (type I]
[adjective (type 1))]adjp (type 1))

"L (_x) (and (adjective x) (adjp _x)))
; right parietal"

VERB PHRASES

..---

to have I

vp->hve+np (fvp (count 1) (person 2) (tense 3) (voice acti-e1]
[have-v (count 1) (tense 3) (person 4)]
[np (count 5) (person 6) (gender 7)]) (have-v np)

"has the gravest condition"

Adverbial Phrases and Regular Intransitive/Transitive Verbs

vp-)trans+np ([vp (count 1) (person 2) (tense 3) (voice active))
[trans (count 1) (tense 3) (person 4)

Inp (count 5) (person 6) (gender 7)]1 (trans np))

-Aaa

4 nobtalue.grauSwm C Sun Aug 30 15:31:15 1951

"contains three region$'

I----p----- (co-t1--pero--)-(en--3-(vice--

vp->v~pp 1vp (count 1) (person 2) (tense 3) (voice 4))

1pp)(oO
(L (_e) (L (-xa) (and ((vp -a) -x) (pp -))

vp->intrans ((vp (count 1) (person 2) (tense 3) (voice active))
(intrana (count 1) (tense 3) (person 4))
nt rans)

vp->adv+vp (vp (count 1) (person 2) (tense 3) (voice 4))
(adverb i
(vp (count 1) (person 2) (tense 3) (voice 4)1)
(L (_a) ML (_x) (and ((vp _e(_x) (adverb s))

"quickly eats"

vp-)vp+adv ((vp (count 1) (person 2) (tense 3) (voice 4)]
(vp (count 1) (person 2) (tense 3) (voice 4)1
(adverb ()

(L (_a) (L (_s) (and)(vp a*) _X) (adverb _))

vp->trans+prep+np ((vp (count 1) (person 2) (tense 3) (voice active))
(trans (count 1) (tense 3) (person 4) (prep 5)]
[preposition (type 5(1
(op (count 6) (person p3) (gender 2(1)

(trans (proposition np))

"bumps into the wall"

to beI

drop event variable from copula clause

vp-)copula+adjpsattr> ((vp (count 1) (person 3) (tense 2) (voice active))
(copula (count 1) (tense 2) (person 3(1
ladjp (type attributive)))

(L (_0) (L)o() (adjp _x)

treat adj verbing as predicate and plunk in front of the variable -x

vp->copula~verbing ((vp (count 1) (person 3) (tense 2) (voice active))
[copula (count 1) (tense 2) (person 3))
(intrans (count 4) (tense 5) (person 6) (participle Ing))

(L (a*) (L (-_x((intrans _s)
"is dying"

Incomplete linguistic treatment

vp->copula~np ()vp (count 1) (person 3) (tense 2) (voice sctive)]
Icopula (count 1) (tense 2) (parson 3))
Iop (count 4) (person 5) (gender 6)1) (L _e) (copula nr),i

vp->colpula+pp (vp (count 1) (person 3) ftense 2) (voice acti-e)
[copula (count 1) (tense 2) (person 3))
I PP () (L (_-I (L 1_) U

"is from the alcohol"

vppas>->copula+v+np(lvp (count 1) (person 3) (tense 2) (voice passive))
(copula (count 1) (tense 2) (person 3))
(trans (count 1) (tense 4) (person 5) (form on))
(preposition (type en))
Inp (count 6) (person 7) (gender 8))) (L (((copula np((

"is indicated by the comprehension test"

SECTION 12.2

NEUROPSYCHOLOGY DICTIONARY AND KNOWLEDGE BASE

- .!~

dict.kerm Wed Aug 19 03:57:39 1987

NODULE: KERNAL LEXICON

PURPOSE: To serve as a base dictionary from which to build a domain
; lexicon. The ideas is to develop a tool which will accelerate
* to man-power intensive task of lexicon generation.

OWNER: copywrite Mark T. Maybury, July, 1987.

FORMAT: C token syntax sematics realization >

(erase-dictionary) ; defined in makedictionary

(mapc 'make-dictionary-entry

NUMBERS I
...

(one (number sing3p) (lexical representation of number 1) one)
(two (number plur) (lexical representation of number 2) two)
(three (number plur) (lexical representation of number 3) three)
(four (number plur) (lexical representation of number 4) four)
(five (number plur) (lexical representation of number 5) five)
(six (number plur) (lexical representation of number 6) six)
(seven (number plur) (lexical representation of number 7) seven)
(eight (number plur) (lexical representation of number 8) eight)

(nine (number plur) (lexical representation of number 9) nine)
(ten (number plur) (lexical representation of number 10) ten)

PROPER NOUNS I

(mark (proper-noun sing3p masculine) me mark)
(michelle (proper-noun sing3p feminine) her michelle)

VERBS I

; ** the verb "to be"

(be (verb copula sing pros pl)
(L (P) (L (WH) (P (L (_y) (equal _WA _y))))) am)

(be (verb copula-sing3p pres p3)
(L (P) (L (WN) (P (L (y) (equal _WH _y)))) is)

(be (verb copula-plur pres p3T

(L (_P) (L (_WH) (_P (L (_y) (equal _WH _y)))) are)

(have (verb have-v sing pros pl) (to own or posess) have)
(have (verb have-v plur pres pl) (to own or posess) have)
(have (verb have-v sing3p pros p3) (to own or poses - irregular 3p sing) has)

for interpretation:

(has (verb have-v singlp pros p3) (to own or posses - irregular
3
p sing) has)

(contain (verb trans 1 pros 2) (restricted or otherwise limited) contain)
(contain (verb trans plur pros p

3
) (restricted or otherwise limited) contain)

(contain (verb trans sing3p pros p3) (restricted or otherwise limited) contain)

(indicate (verb trans 1 pros 2) (telling) indicate)
(indicate (verb trans sing3p pres pl) (telling) indicate)

(indicate (verb trans plur pres p3) (telling) indicate)

(function (verb trans 1 pros 2) (telling) function)
(function (verb trans sing3p pres pl) (telling) function)
(function (verb trans plur pros p3) (telling) function)

(suffer (verb trans 1 pros from) ; removed plur

(L (_np) (L (_e) (L (_WH) (_np (L (y) (suffer _WH _y _a)))))) suffer)

NOUNS I

Domain Specific Taxonomy

Fault Classification/System Components

Capabilities/Symptoms

A

dict.kern Wed Aug 19 03:57:39 1987

Fault Diagnosis Lexical Entries

e-mple {n.un ma- I he, 4L) exar,ie example)

(function (noun count I neuter) function function)
(disorder (noun count I neuter) disorder disorder)
(decision (noun count 1 neuter) decision decision)

(diagnosis (noun count 1 neuter) diagnosis decision)
(human (noun count 1 neuter) human human)

; Entity/Relationship and Frame Knowledge Representation Lexis

(entity (noun count I neuter) entity entity)
(sub-class (noun count 1 neuter) sub-class sub-class)
(value (noun count 1 neuter) value value)

(damage (noun mass 1 neuter) damage damage)
(importance (noun count 1 neuter) importance importance)
(symptom (noun count 1 neuter) symptom symptom)
(test (noun count 1 neuter) test test)
(observation (noun count 1 neuter) observation observation)

ADJECTIVES I

(similar (adjective attributive) similar similar)
(different (adjective attributive) different different)
(relative (adjective attributive) relative relative)

(slow (adjective attributive) slow slow)

(fast (adjective attributive) fast fast)

DETERMINERS I

; ** articles
(a (determiner count sing3p indefart notof noneg nonum) (article before consonant) a)
(an (determiner count sing3p indefart notof noneg nonum) (article before vowel) an)
(the (determiner count 1 defart notof noneg nonum) (sing/plur form of the) the)

PREPOSITIONS I

(to (preposition) (toward or in the direction of) to)

(in (preposition) (inner or inward location) in)
(with (preposition) (connection or association) with)
(from (preposition) (place of origin) from)
(of (preposition) (place of origin) of)
(for (preposition) (indicating purpose) for)

(located (preposition located-in) (located-in) located)
(in (preposition located-in) (located-in) in)

PRONOUNS I

(he)pronoun pars sing3p subj p3 masculine) (male) he)
(she (pronoun pars sing3p subj p3 feminine) (female) she)
(it (pronoun pars sing3p subj p3 neuter) (a thing) it)

(they (pronoun pars plur subj p3 neuter) (a group of others) they)

(him (pronoun pars sing3p obj p3) (a male viewed objectively) him)
(her (pronoun pars sing3p obj p3) (a female viewed objectively) her)
(it (pronoun pers sing3p obj p3) (a thing viewed objectively) it)
(them (pronoun pars plur obj p3) (a group of others) them)

(his (pronoun pass sing3p obj p3) (belonging to a male viewed objectively) his)
(her (pronoun pass sing3p obj p3) (belonging to a female viewed objectively) her)
(its (pronoun poss sing3p obj p

3
) (belonging to a thing viewed objectively) its)

(their (pronoun poss plur obj p3) (belonging to a group of others) their)

(his (pronoun pass sing3p subj p3) (belonging to a male viewed suljectively) his)
(hers (pronoun poss sing3p subj p3) (belonging to a female viewed subjectively) hers)
(its (pronoun poss sing3p subj p3) (belonging to a thing viewed subjectively) its)
(theirs (pronoun poss plur subj p3) (belonging to a group of others) theirs)

relative pronouns
(that (pronoun rel) (The ball that is red) that)
(who (pronoun rel) (The patient who died) who)
(which (pronoun cl) (The book which burned) which)

demonstrative pronouns
(this (pronoun demonstr sing3p) (this book) this)
(that (pronoun demonstr sing3p) (that book) that)

a- slonw

3 dict.kern Wed Aug 19 03:57:40 1987

(these (pronoun demonstr plur) (these books) these)
(those pon-., jemanstr plui) (those books) thoses

PUNCTUATION I

(comma (comma) comma comma)
(period (period? period period)
(colon (colon) colon colon)

;(exclamation-point (exclamation-point) exclamation-point exclamation-point)
;(question-mark (question-mark) question-mark question-mark)

CONJUNCTIONS

(end (conjunction coord) (intersection) and)
(or (conjunction coord? (union) or)
(but (conjunction coord) (qualification) but)
(before (conjunction subord) (pre-temporel) before)
(after (conjunction subord) (post-temporal) after)
(because (conjunction subord) (causality) because)

CONNECTIVES

don't know where to put this:
(there (pronoun pers plur subj p3 neuter) (there are) there)

(for (connective for-example) for for)
(example (connective for-example) example example)
(instance (connective) instance instance)
(therefore (connective) therefore therefore)
(because (connective) because because)

)).

meefropsycheogy.dict Sun Aug 30 15:21:33 1997

*MODULE: NEUROPSYCHOLOOICAL LEXICON
*PURPOSE: To areas any current dictionary and load in a lexicon of
*nourophyaiology and neuropsychology.

*OWNER: eopywrite Mark T. Maybury. July, 19$7.

FORMAT: (token syntax sesatics realization>

(orase-dictionary) defined in makedictienary
(mape 'make-dictionary-entry 1

NUMB ERS

(one (number sinq3p) (lexical representation of number 1) One)
(two (number plur) (lexical representation of number 2) two)
(three (number plur) (lexical representation of number 3) three)
(four (number Plur) (lexical representation of number 4) four(
(five (number plur((lexical representation of number 5) five(
(six (number plur) (lexical representation of number 6) six)
($oven (number plur((lexical representation of number 7(seven)
(eight (number Plur((lexical representation of number 0) eight(
(nine (number Plur((lexical representation of number 9) nine)
(ten (number plur((lexical representation of number 10) ton(

PROPER NOUNSI

(mark (proper-noun sinq3p masculine) me mark)
(michelle (proper-noun sing3p feminine) her Nicholle)
(korsakoffs (proper-noun singlp neuter) korsakoffs korekoffs)
(huntingtons (proper-noun sing3p neuter) huntingtons huntingtons(
(aluheimers (proper-noun sing3p neuter) elshelmers algheimers(

VERBSI

; - the verb -to be"

(be (verb copula sing pros pl)
(L (P) I(L (_YN) (_P (L)_y) (equal _WH _y)f)) an)

(be (v* ru co pu1a sing3p pros p3)
L) (L (WN((_P (L (_y) (equal _UNH _y)f)() is)

(be :ve rs c opu 1! plur pros p3)
(L (_P) (L (_Ni) (_P (L (_y((equal _Nil _y))))(are)

(have (verb have-v sing pres p1) (to own or posess) have)
(have (verb have-v plur pros p1) (to own Or posess) have)
(have (verb have-v sing3p pros p

3
) (to own or posess - irregular 3p sing) has)

(contain (verb trans plur pros p3) (restricted or otherwise limited) contain)
(contain (verb trans sing3p pros p

3
) (restricted or otherwise limited) contain)

(indicate (verb trans plur pros p3) (telling) indicate)
(indicate (verb trans singlp pros p1) (telling) indicate)

(function (verb trens plur pros p3) (telling) function)
(function (verb trans sing3p pros p1) (telling) function)

(manifest (verb trans sing3p pres p1) (evident) manifest)
(made (verb trans singlp past pl) (creating or performing) made)

)suffer (verb trans 1 pros from)
(L (_np((L (a*) IL (_WH) I _np (L (_y) (suffer _WH _y _ e,)) suffe'r

NOUN S

Neurophysiology

(organ (noun count singlp neuter) (cell-based functioning sub component) organ)
(brain (noun count sing3p neuter) region brain)
(hemisphere (noun count sing3p neuter) region hemisphere)
(left-hemisphere (noun count sing3p neuter) region left-hemisphere)
(right-heikisphere (noun count singlp neuter) region right-hemisphere)
1ifrontal (noun count sing3p neuter) lobe left-frontal)

2 mmropsycbologyodict Bun Aug 30 15:21:34 1987

(rfrontal (noun count einq3p neuter) lobe riolt-frontal)
(Iparietal (noun count sing3p neuter) lobe loft-parietal)
(cpariotal (noun count sing3p neuter) lobe right-parietal)
(lsubcortex (noun count sing3p neuter) lobe loft-subcortex)
(rsubcortex (noun count sing3p neuter) lobe right-subcortex)
(Itemporal (noun count sing3p neuter) lobe loft-temporal)
(rtemporal (noun count sing3p neuter) lobe right-temporal)
(loccipital (n-un count sing3p neuter) lobe left-occipital)
(roccipital (noun count singip neuter) lobe right-occipital)
(skull (noun count I neuser) (cranial container and protector) skull)
(body (noun count I noutq-1 body body)
(region (noun count 1 neuter) &egion region)
(lobe (noun count 1 neuter) lobe lobe)

; capabilities/symptoms

(motor-response (noun mass 1 neuter) motor-response motor-response)
(vision (noun mass 1 neuter) vision vision)
(sensation (noun mass I neuter) sensation sensation)
(stabiity (noun ass 1 neuter) stability stability)
(stability-detection (noun ma 1 neuter) stability-detection stability-detection)

(control (noun mess 1 neuter) control control)
(memory (noun mass neuter) memory memory)
(naming (noun mess I neuter) naming naming)
(instability (noun mass I neuter) instability instability)
(personality (noun aass I neuter) personality personality)
(sex-activity (noun mass 1 neut. sexual-activity sexual-activity)
(feature-recognition (noun mass I neuter) function feature-recognition)
(gestalt-understanding (noun mass I neuter) function gestalt-understanding)
(intrapersonal-bahavior (noun mass I neuter) intraporsonal-bohavior intrapersonal-behavior)
(understanding (noun mass 1 neuter) consciousness understanding)
(language (noun moss 1 neuter) language language)
(comprehension (noun mass 1 neuter) comprehension comprehension)
(mental-control (noun mass I neuter) mental-control mental-control)
(immediate-recall (noun mass 1 neuter) immediate-recall immediate-recall)
(wisconsin (noun mass I neuter) wisconsin Wisconsin)
(I-cog-flexibility (noun mass I neuter) I-cog-flexibility loft-cognitive-flexibility)
(r-cog-flexibility (noun mass 1 neuter) r-cog-flaxibility right-cognitive-flexibility)
(m-n (noun mass 1 neuter) m-n i-n)
(s-n-perseveration (noun mass I neuter) m-n-perseveration m-n-perseveration)
(loops (noun mass 1 neuter) loops loop)
(loops-perseveration (noun mass 1 neuter) loops-perseveration loops-perseveration)
(eam (noun mass 1 neuter) a short-term-memory)
(drawings (noun mass 1 neuter) drawings drawings)
(scribbles (noun mass 1 neuter) scribbles scribbles)
(pencil (noun count 1 neuter) pencil pencil)
(construction (noun mass 1 neuter) construction construction)
(example (noun mass 1 neuter) example example)

(history (noun count 1 neuter) history history)
(function (noun count I neuter) function function)
(location (noun count 1 neuter) location location)
(instrument (noun count 1 neuter) instrument instrument)
(disorder (noun count I neuter) disorder disorder)
(failure (noun count 1 neuter) failure failure)
(decision (noun count 1 neuter) decision decision)
(diagnosis (noun count 1 neuter) diagnosis decision)
(evaluation (noun count I neuter) evaluation evaluation)
(family (noun count 1 neuter) family family)
(patient (noun count 1 neuter) patient patient)
(doctor (noun count 1 neuter) doctor doctor)
(boy (noun count I masculine) boy boy)
(girl (noun count I feminine) girl girl)
(human (noun count 1 neuter) human human)
(house (noun count 1 neuter) house house)

; disorders
(global (noun mass 1 neuter) global global)
(focal (noun mass I neuter) focal focal)
(amnesic (noun mass 1 neuter) amnesic amnesic)
(multi-infarct-dementia (noun mass 1 neuter) multi-infarct-dementia multi-infarct-dementiS
(encephalitis (noun mass I neuter) encephalitis encephalitis?
(severe-head-trauma (noun mass I neuter) severe-head-trauma sevare-head-trauma)
(alcohol (noun mass 1 neuter) alcohol alcohol)
(toxicity (noun mass 1 neuter) toxicity toxicity)
(faking (noun mass 1 neuter) faking faking)
(subcortical (noun mass I neuter) subcortical subcortical)
(genetics (noun mass 1 neuter) genetics genetics)
(origin (noun mass I neuter) origin origin)
(hyper-activity (noun mass I neuter) hyper-activity hyper-activity) p.
(genetic-history (noun mass 1 neuter) genetic-history genetic-history)
(chorea (noun mass I neuter) chores chores)
(jitters (noun mess 1 neuter) jitters jitters)
()tm-good-iq (noun mass 1 neuter) eta-good-iq memory-1q)
(apathetic (noun mass I neuter) apathetic apathetic)
(disinterest (noun mass 1 neuter) disinterest disinterest)

3 aeurepnchology.dict Sun Aug 30 15:21:34 1987

(name (noun count 1 neuter) name name)
(class (noun count 1 neuter) class class)
(sub-clas (noun count 1 neuter) sub-class sub-class)
(type noun count 1 neuter) type type)
(4de (noun count 1 neuter) dda dde)

(entity (noun count 1 neuter) entity entity)
(value (noun count I neuter) value value)
(likelihood (noun count sing3p neuter) likelihood likelihood)
(result (noun count sing3p neuter) result result)
(damaqe (noun mass sing3p neuter) damage damage)
(importance (noun count 1 neuter) importance importance)
(symptom (noun count plur neuter) symptom symptom)
(test (noun count plur neuter' test test)
(observation (noun count plur neuter) observation observation)
(observation-class (noun count plur neuter) observation-class observation-class)
(disorder-class (noun count plur neuter) disorder-class disorder-class)
(state (noun count sing3p neuter) state state)
(category (noun count sing3p neuter) category category)
(symptom (noun count sing3p neuter) symptom symptom)
(test (noun count sing3p neuter) test test)
(observation (noun count sing3p neuter) observation observation)
(observation-class (noun count sing3p neuter) observation-class observation-class)
(disorder-classe (noun count sing3p neuter) disorder-class disorder-class)

ADJECTIVES I

tImilar (adjective attributive) similar similar)
(differen' fadjective attributive) different different)
(relative (adj -ie attributive) relative relative)
(left (adjective attributive) left left;
(right (adjective attributive) right right)
(cognitive (adjective attributive) cognitive cognitive)
(pervasive (adjective attributive) pervasive pervasive)
(local (adjective attributive) local local)
(genetic (adjective attributive) genetic genetic)
(lateral (adjective attributive) lateral lateral)
(quick (adjective attributive) quick quick)
(personal (adjective attributive) personal personal)
(uncontrollable (adjective attributive) uncontrollable uncontrollable)

(damaged (adjective sttributive) damaged damaged)
(slow (adjective attributive) slow slow)
(fast (adjective attributive) fast fast)
(drunk (adjective attributive) drunk drunk)

DETERMINERS

-a rticle.
(a (determiner count sing3p indefart notof noneg nonum) (article before consonant) a)
(an (determiner count sing3p indefart notof noneg nonum) (article before vowel) an)
(the (determiner count I defart notof noneg nonum) (sing/plur form of the) the)

PREPOSITIONS

(to (proposition) (toward or in the direction of) to)
(in (preposition) (inner or inward location) in)
(with (preposition) (connection or association) with)
(from (preposition) (place of origin) from)
(of (preposition) (place of origin) of)
(for (preposition) (indicating purpose) for)

; conjoined propositions
(located (proposition located-in) (located-in) located)
(in (preposition located-in) (located-in) in)

; verbal particles
(in (preposition an) (contained-in) in)
(by (proposition on) (indicated-by) by)

PRONOUNS

(he (pronoun pors sing3p subj p3 masculine) (male) he)
(she (pronoun per* sing3p subj p3 feminine) (female) she)
(it (pronoun pors sing3p subj p3 neuter) (a thing) it)
(they (pronoun pers plur subj p3 neuter) (a group of others) they)

(him (pronoun pars sing3p obj p3) (a male viewed objectively) him)

AL

4 nOurlpsychOlogy.diCt Sun Aug 30 15:21:35 1987

(her (pronoun pore sing3p obJ p3) (a female viewed objectively) her)
(it (pronoua poe sing3p obj p3) (a thing viewed objectively) it)
(then (pronoun pars plur obj p3) (a group of others) thou)

(his (pronoun pose sing3p obj p3) (belonging to a mole viewed objectively) his)
(her (pronoun pose aing3p obj p3) (belonging to a female viewed objectively) her)
(its (pronoun pose sing3p obj p3) (belonging to a thing viewed objectively) its)
(their (pronoun pose plur obj p3) (belonging to a group of others) their)

(his (pronoun poss sing3p subj p3) (belonging to a sale viewed subjectively) his)
(hers (pronoun peos sing3p subj p3) (belonging to a female viewed subjectively) hers)
(its (pronoun pose sing3p subj p3) (belonging to a thing viewed -ibjectively) its)
(theirs (pronoun pose plur subj p3) (belonging to a group of others) theirs)

; - relative pronouns
(that (pronoun rel) (The ball that is red) that)
(who (pronoun rel) (The patient who died) who)
(which (pronoun rel) (The book which burned) which)

-*o demonstrative pronouns
(this (pronoun demonstr sing3p) (this book) this)
(that (pronoun demonotr sing3p) (that book) that)
(those (pronoun demonstr plur) (these books) these)
(those (pronoun domonstr plur) (those bookn) those)

PUNCTUATION

icomma (comma) comma comma)
(period (period) period period)
(colon (colon) colon colon)

(exclamation-point (exclamation-point) exclamation-point exclanation-point)
(question-mark (question-mark) question-mark question-mark)
---- --

CONJUNCTIONS I
---- --

(end (conjunction coord) (intersection) and)
(,r (conjunction coord) (union) or)
(but (conjunction coord) (qualification) but)
(before (conjunction subord) (pre-temporal) before)
(after (conjunction subord) (post-temporal) after)
(because (conjunction subord) (causality) because)

CONNECTIVES

there pronoun treated as a connective, unsure of syntactic analysis
(there (pronoun poets plur subj p3 neuter) (there are) there)
(for (connective for-example) for for)
(example (connective for-exemplo) example example)
:instance (connective) instance instance)
(therefore (connective) therefore therefore)
(because (connective) because because)

mmuropmycbology.kb Sun Aug 30 15:22:31 1987

MODULE: NEUROPSYCHOLOGIST FRANZ KNOWLEDGE BASE
PURPOSE: To reprensent structural knowledge of the domain.
OWNER: copywrit. Mark T. Maybury, July, 1987.

; Developed from Maybury and Weiss, 19$6.
REFERENCE: Knowledge Structures from [Minsky, 19751 frame representation

; formalism.

BRAIN RD contains a model of the brain which is organized as a hiorarchy. 1
It-is broken down into left and right hemispheres which are further
subdivided into local lobes. Each lobe has associated conditions (the
children frame) which are present when there is damage in that
particular lobe. The sibling frames of each of these conditions,
furthermore, are demons which calculate a probability from Il to +1.
These demons are test results or professional observations which
indicate the presence or absence of the parent condition.

(construct-frame-kb '(

(human (super-class (value nil)) or organ
(sub-class (brain heart lungs disorder))
(type (value body))) ; or region or object

(brain (super-class (value human))
(sub-class (value left-hemisphere right-hemisphere))
(type (value region))
(dda (value (location skull human) (function understanding)))
(importance (value 10))
(damage (value 5())

(left-hemisphere
(super-class (value brain))
(sub-class (value lfrontal lparietal lsubcortex

ltomporal loccipital))
(type (value reqion(
(dde (value (location brain loft) (function feature-recognition))}
(importance (value 10))
(damage (value 3)))

(right-hemisphere
(super-class (value brain()
(sub-class (value rfrontal rparietal rsubcortax

rtemporal roccipital))
(type (value region))
(dd. (value (location brain right) (function gestalt-understanding)))
(importance (value 10))
(damage (value 7)))

(lfrontal (super-class (value left-hemisphere))
(sub-class (value mental-control 1-cog-flexibility

r-homi-paralysis language comprehension
negative-mood movement writing))

(dda (value (location hemisphere left) (function controlHfl
(type (value lobe)
(importance (value 5))
(damage (value 4W)

(1-cog-flexibility (super-class (value lfrontal))
(sub-class (value m-n m-n-perseveration

loops loops-persaverstion
wisconsin)

importance 1 I I 1 1 1 1!)
(dda (value (function control coqniti,e))
(type (value symptomi(
(importance (value 3))
(damage (value 8)))

(m-n (super-class (value 1-cog-flexibility))
(type (value observation))
(dda (value (function drawings m-n)

(instrument pencil())
(damage (value 5))M

(m-n-perseveration (super-class (value 1-cog-flexibility))
(type (value observation))
(ddo (value (functicn scribbles m-n)

(instrument pencil)))

2 bouropeycholoqy.kb Sun Aug 30 15:22:32 1957

(damage (value 7)))
(loops (super-class (value l-cog-flexibility)l

(type (value observation))
(dde (value (function drawings loop)

(instrument pencil)))
(damage (value 9))

(loops-perseveration (super-class (value 1-cog-flexibilityl)

(type (value observation))
(dda (value (function scribbles loops)

(instrument pencil)))
(damage (value 6W)

(wisconsin (super-class (value 1-cog-flexibility
r-cog-flexibility)

(type (value observation))
(dda (value (function building house)))
(damage (value 9)))

(mental-control (super-class (value lfrontsl))

(sub-class (value immediate-recall)
(importance 1))

(type (value symptom))
(dda (value (function stability memory)))
(importance (value 8))
(damage (value 2))

(immediate-recall (super-class (value mental-control))

(type (value test))
(dda (value (function evaluation sta)))
(damage (value 4)

(iparietal (super-class (value left-hemisphere))
(sub-class (value gerstmann-syndrome 1-constructional-dyspraxia

reading-coup aphasia))
(type (value lobe))
(dda (value (location hemisphere left) (function motor-responsel))
(importance (value 3))

(damage (value 4))

(lsubcortex (super-class (value left-hemisphere))
(sub-class (value short-term-memory right-body-control))
(type (value lobe))
(dda (value (location hemisphere lower nil left) (function sensation))

(importance (value 5))
(damage (value 2))1

(ltemporal (super-class (value left-hemisphere))

(sub-class (value naming instability))
(type (value lobe))
(dde (value (location hemisphere lateral nil nil left) (function lanqua

ge))

(importance (value 8))
(damage (value 3)))

(naming (super-class (value ltemporal))
(sub-class (value bos-name)

(importance 1))

(type (value symptom))
(dd. '4value (function failure memory)))
(importance (value 10))
(damage (value 2)))

;defined above in aphasia

(instability (super-class (value ltemporaln)

(sub-class (value pervonality ex-activityl
(importance 1 1))

(type (value symptom))
(dde (value (function control personal)))
(imnortance (value i0))
(damage (value 4)f)

(personality (super-class (value instability))
(type (value observation))
(dds (value (function stability-detection) (locati

on patient)))

(importance (value 10))

(damage (value 4)))

(sex-activity (super-class (value instability))
(type (value observation))

(dda (value (function intrapersonal-behavior))}
(importance (value lo)
(damage (value 4M(,

3 nmuropsychology.kb Sun Aug 30 15:22:32 1987

(loccipital (super-class (value left-hemisphere))
(sub-class (value right-blindness})
(type (value lobe))
(dda (value (location skull human) (function vision)))
(importance (value 3))
(damage (value 2)))

(rfrontal (super-class (value right-hemisphere))
(sub-class (value l-hemi-paralysis r-constructional-dyspraxia

positive-mood r-cog-flexibility))
(type (value lobe))
(dda (value (location skull human) (function comprehension)))
(importance (value 10))
(damage (value 7)))

(rparietal (super-class (value right-hemisphere))
(sub-class (value neglectful))
(type (value lobe))
(dda (value (location skull human) (function motor-response)))
(importance (value 10))
(damage (value 7)))

(rsubcortex (super-class (value right-hemisphere))
(sub-class (value visual-atm left-body-control))
(type (value lobe))
(dda (valui (location skull human) (function sensation)))
(importance (value 10))
(damage (value 7)))

(rtemporal (super-class (value right-hemisphere))
(sub-class (value no-facial-recognition))
(type (value lobe))
(dda (value (location skull human) (function language)))
(importance (value 10))
(damage (value 7)))

(roccipital (super-class (value right-hemisphere))
(sub-class (value left-blindness))
(type (value lobe))
(dda (value (location skull human) (function vision)))
(importance (value 10))
(damage (value 7)))

(disorder (super-class (value brain))
(sub-class (value global focal amnesic))
(type (value category))
(dda (value (function evaluation patient)))
(importance (value 10))
(damage (value 8)))

(global (super-class (value disorder))
(sub-class (value multi-infarct-dementia encephalitis alzheimers

severe-head-trauma alcohol toxicity faking))
(type (value disorder-class))
(dda (value (function damage pervasive) (location brain)))
(importance (value 10))
(damage (value 9)))

(focal (super-class (value disorder)) ;FOCAL
(sub-class (value frontal head-trauma stroke

tumor demyelination))
(type (value disorder-class))
(dda (value (function damage local) (location lobe))$
(importance (value 10))
(damage (value 3))

(huntingtons (super-class (value frontal)) ;GENETIC (PAPFT,
(sub-class (value subcortical genetics hypes-acti it,,)
(type (value disorder~i
dda (value (instrument origin genetiU r(ccaton]-'h -0'-i

(importance (value 1))
(damage (value 3)))

(genetics (super-class (value huntingtons))
(sub-class (value genetic-history)

(importance 1))
(type (value observation-class))
(dda (value (function history disorder) (location family)))
(importance (value 4))
(damage (value 2)))

(genetic-history (super-class (value genetics))

4 nouropsychology.kb sun Aug 30 15:22:32 1981

(type (value observation))
(damage (value 7)))

(hyper-activity
(super-class (value hUntingtons))
(sub-class (value chorea)

(importance 1))

(type (value observation-class))
Idda (value (function movement uncontrollable)))
(importance (value 5))
(damage (value 3)))

(chorea (super-class (value hypor-octivity))
(dda (value (function dancing uncontrollable)

(instrument Jitters)))

(type (value observation))
(damage (value 7)))

(amnesic (super-class (value disorder))

(sub-class (value korsekoffs))

(type (value disorder-class))

(dda (value (function damage memory) (location brain)))

(importance (value 10))

(damage (value 8)))

(korsakoffs (super-class (value stm))

(sub-class (value stm-good-iq apathetic)

(importance 1 11)

(type (value disorder))

(dda (value (instrument memory)))

(importance (value 8))

(damage (value 9)))

stm-good-iq
(super-class (value korsakoffs))

(dda (value (function memory quick)))

(type (value observation))

(importance (value 4))

(damage (value 9))
(apathetic

(super-class (value korsakoffs))

(dda (value (function disinterest())

(type (value observation))

(importance (value 2))

(damage (value 10)))

close frame list

close make frame kb

/uaer/mphil/mtm/disaert/Ku/brainkb.lp Sun Aug 30 15:13:54 1987

BRAIN KB.LSP contains a model of the brain which is organized as s *
hi;crrchy. It *
is broken down into left and right hemispheres which are further sub- *
divided into local lobes. Each lobe has associated conditions (the
children frame) which are present when there is daage in that *

particular lobe. The sibling frames of each of these conditions, *

furthermore, are demons which calculate a probability from -1 to +1.
These demons are test results or professional observations which *
indicate the presence or absence of the parent condition. *

(construct-frame-kb ,(

(brain (super-class (value organ))
(sub-class (value left-hemisphere right-hemisphere))

(type (value region))

(importance (value l)))

(left-hemisphere
(super-class (value brain))

(sub-class (value lfrontal lparietal lsubcortex

ltemporal loccipital))
(type (value region))
(importance (value 1))

(right-hemisphere
(super-class (value brain))
(sub-class (value rfrontal rparietal rsubcortex

rtemporal roccipital)
(type (value region))
(importance (value 1}))

(Ifrontal (super-class (value left-hemisphere))
(sub-class (value r-hemi-paralysis language comprehension

negative-mood movement I-cog-flexibility

mental-control writing))
(type (value region))
(importance (value 1)))

(r-hemi-paralysis (super-class (value ifrontal))

(sub-class (value right-finger face-walk)

(importance 1 1))
(type (value symptom))
(importance (value 1)))

(right-finger (super-class Ivalue r-hoal-paralysis})

(type (value observation)))
(face-walk (super-class (value r-hemi-paralysis))

(type (value observation)))

(language (super-class (value lfrontel))

(sub-class (value bos-name-no-cues
bos-name-perseveration

fas-goneration fas-perseveretion
written-difficulty voceb}

(importance I 1 1 1 1 1))

(type (value symptom))

(importance (value 1)})

(bos-name-no-cues (super-class (value language)
(type (value tst))

(bos-name-persaveration (super-class (value language))

(typs (",slue test})}
(fas-genaration (super-class (value language 1-cog-flexibili ,

(type (svlus test)))
(fas-perseveration ($upIr-clasn (vslue language 1-cog-flexibilit,.'

(type (value observation)l)
(written-difficulty (super-class (value language))

(type (value observation)))
(vocab (super-class (value language))

(type (value test)))

(comprehension (super-class (value lfrontal()
(sub-class (value verbal-abstract-reasoning

similarities)

(importance 1 1))
(type (value symptom))

(importance (value 1)))

(verbal-abstract-reasoning (super-class (value comprehension))

(type (value test)))

2 /uamr/upbil/utm/diseert/KU/braim kb.Iup Sun Aug 30 15:13:54 1987

(similarities (super-class (value comprehension))
(type (value test))

(negative-aood (super-class (value lfrontal))
(sub-close (value depression)

(importance 1))
(type Ivalue symptom))
(importance (value IM(

(depression (super-class (value nogativo-aood))
(type (value observation(((

(movement (auper-class (value lfrontal((
(sub-claas (value alow)

(importance 1))
(type (value symptom))
(importance (value IM)

(slow (super-class (value movement))
(type (value observation(()

(l-coq-flexibility (super-class (value lfrontal))
(sub-class (value a-n a-n-parseveration

loops loops-parsoveration
fas-goneration fas-porseveration
Wisconsin)

(importance 1 1 1 1 1 1 1)(
(type (value symptoa))
(importance (value IMl

(a-n (super-class (vo1~ze l-cog-flexibility((
(type (value observation)))

(m-n-persoveration (super-class (value l-cog-flexibility((
(type (value observation(((

(loops (super-class (value l-cog-flexibility((
(type (value observation)))

(loops-perseveration (super-class (value l-cog-flexibility)(
(type (value observation)))

:fas-generation defined above in language
(fas-porseveration (super-class (value 1-cog-flesibility((

(type (value observation)))
(Wisconsin (super-class (value I-cog-flexibility

r-cog-flexibility()
(type (value observation)))

(mental-control (super-class (value lfrontal((
(sub-class (value immediate-recall)

(importance 1))
(type (value symptom))
(importance (value 1M(

(immediate-recall (super-class (value mental-control((
(type (value test((

(writing (super-class (value lfrontal()
(sub-class (value fluency grammar sequencing

letter-form)
(importance 1 1 1 1))

(type (value symptom))
(importance (value 1()

(fluency (supar-class (value writing))
(type cls (value observation)))

(grammar (super-ls (value writing aphasia))
(type (value observation)))

(sequencing (super-class (value writing(I
(type (value observation)

(letter-form (supor-class (value writingl)
(type (value observation)))

(lparietal (super-class (value left-heisisphere))
(sub-class (value gerstmann-syndrome 1-constructiol-dyspr-,i

raain-comp aphasia))
(type (value region))
(importance (value 1Ml

(gsrstmann-syndrome (super-class (value lparietal()
(sub-class (value finger-agnosia left-right-confusioN

dyscalculia dysgraphia(
(importance 1 1 1 1))

(type (value symptom))
(importance (value 1)))

(finger-aqnosia (super-class (value gerstmann-syndrome)(
(type (value test)))

(left-right-confusion (super-class (value gerstmann-syndrom*))

3 /uaer/mlphi1/utm/diasmrt/KU/brain-kb.lsp Sun Aug 30 15:13:55 1987

(type (value observation))
(dyscalculia (super-class (value gerstmann-*yndrome))

(type (value observation)))
(dyagraphia (super-class (value gorstann-syndrome))

(type (value observation)))

(l-constructional-dyspraxio
(supor-class (value lparietal))
(sub-class (value draw.ings blocks block-detzils)

(importance 1 1 1))
(type (value symptom))
(importance (value 1)((

(drawings (super-ceas (value l-constructional-dyspraxia((
(type (value observation)))

(blocks (super-class (value l-construetional-dyapraxia((
(type (value observation)))

(block-details (super-class (value l-constructional-dysprexia((
(type (value observation)))

(reading-comp (super-class (value lparietal()
(sub-class (value dyslexia oral-reoing)

(importance 1 1))
(type (value symptom))
(importance (value 1()

(dyslexia (super-class (value reading-comp()
(type (value observation)()

(oral-reading (super-class (value reading-comp((
(type (value observation)()

(aphasia (super-class (value lparietal((
(sub-class (value boa-name bos-name-paraphasia

neologisms grammar syntax)
(importance 1 1 1 1 1)(

(type (value symptom))
(importance (value 1W)

(boa-name (super-class (value aphasia naming))
(type (value test)))

(bos-name-paraphasia (super-class (value language))
(type (value observation)))

(neologisms (super-class (value aphasia))
(type (value observation)((

;grammar defined above in w.riting
(syntax (super-class (value aphasia))

(type (value observation()

(lsubcortex (super-class (value left-hemisphere))
(sub-class (value short-term-memory right-body-control))
(type (value region))
(importance (value 1(((

(short-term-memory
(super-class (value lsubcortex()
(sub-class (value digits logical-memory pairod-associateS(

(importance 1 1 1))
(type (value symptom))
(importance (value 1)

(digits (super-class (value short-term-memory))
(type (value test)))

(logical-memory (super-class (value short-term-memory))
(type (value test)))

(paired-associates (super-class (value short-toris-memoryl)
(type (value test)))

(right-body-control
(super-class (value lsubcortex)l
(sub-class (value riqht-dozsinant-finger)

(importance I)
(type (valus symptom)
(importance (value 1M)

(right-dominant-finger (super-class (value right-body-control))
(type (value observation)))

)ltomporal (super-class (value left-hemisphere))
(sub-class (value naming instability))
(type (value region))
(importance (value 1)))

(naming (super-class (value ltemporal()
(sub-class (value bos-name)

(importance W(
(type (value symptom))

4 /uaer/.pbil/mtm/dieaa~rt/KU/braim-kb.lap Sun Aug 30 15:13:55 1987

(importance (value l1M

;definod above in aphasia

(instability (super-class (value ltemporal))
(sub-class (value personality sex-activity)

(importance 1 1))
(type (value symptom))
(importance (value I))

(personality (auper-class (value instability))
(type (value observation)))

(sex-activity (super-class (value instability))
(type (value observation)))

(loccipital (super-class (value left-bemisphere((
(sub-class (value rigbt-blindness((
(type (value region))
(importance (value l(((

(right-blindness (super-claso (value loccipitail((
(sub-class (value r-blindness(

(importance 1))
(type (value symptom))
(importance (value 1(((

(r-blindness (super-class (value right-blindness((
(type (value observation)))

(rfrontal (super-class (value right-heaisphero((
(sub-cis (value 1-homi-pacalysis c-constructional-dyspraxia

positive-mood r-cog-flexibility()
(type (value region))
(importance (value IM(

(l-beei-paralysis (super-class (value rtrontal((
(sub-class (value left-finger(

(importance l)(
(type (value symptom))
(importance (value l(((

(left-finger (super-class (value l-hoai-parolysisW)
(type (value observation)))

(t-constructional-dysgraxia
(super-class (value rfrontal((
(sub-class (value exploded separate-blocks

pictur*-eisarrangeaent
pussle-difficulty pattern-matching)

(importance 1 1 1 1 1()
(type (value symptom))
(importance (value 1(()

(exploded (super-clas (value r-constructional-dyspraxia((
(type (value observation)))

(separate-blocka (super-class (value r-censtructionol-dyspraxia((
(type (value observation)))

(pictur*-aisarrangeaent (super-class (value r-constructional-dyspraxia((
(type (value observation)))

(pussle-difficulty (super-class (value r-constructional-dyspraxia((
(type (value observation)))

(pattern-matching (super-class (value r-cnnstructional-dyspraxia)(
(type (value observation((

(positive-mood (super-class (value rfrontsl)l
(sub-class (value elation)

(importance 1))
(type (value symptom))
(importance (value 1))

(elation (super-class (value positive-mood))
(type fvalue observation)),

(c-cog-flexibility (super-class (value rfrontalfl
(sub-class (value wisconsin(

(importance 1))
(type (value symptom))
(importance (value 1(((

;defined above in I-cog-flexibility

(rparLetal (super-class (value right-homiapbere((
(sub-class (value neglectful))
(type (value region))
(importance (value 1())

/uner/x hL1/mtm/daeert/K3/braimkb.1ep Sun Aug 30 15:14:04 1987

(neglectful (super-class (value rperietal))
(sub-class (value neglects-left-space)

(importance 1))
(type (value symptom))
(importance (value 1)))

(neglects-left-space (super-class (value neglectful))
(type (value observation)))

(rsubcortex (super-class (value right-hemisphere))
(sub-class (value visual-st left-body-control))
(type (value region))
(importance (value 1)))

(visual-atm (super-class (value rsubcortex))
(sub-class (value wms-delay visual-reproduction benton)

(importance 1 1 1))
(type (value symptom))
(importance (value 1)))

(wms-delay (super-class (value visual-stm))

(type (value test)))
(visual-reproduction (super-class (value visual-satm))

(type (value test)))
(benton (super-class (value visual-stm))

(type (value test)))

(left-body-control

(super-class (value rsubcortex))
(sub-class (value left-dominant-finger)

smpoctance 1))

(type (value symptom))

(importance (value 1)))

(left-dominant-finger (super-class (value left-body-control))

(type (value observation)))

(rtemporal (super-class (value right-hemisphere))
(sub-class (value no-facial-recognition))

(type (value region))

(importance (value 1)))

(no-facial-recognition

(super-class (value rtemporal))
(sub-class (value milner-facial-recognition)

(importance 1))

(type (value symptom))

(Importance (value I)))

(milner-facial-recognition
(super-class (value no-facial-recognition))

(type (value test)))

(roccipital (super-class (value right-hemisphere))

(sub-class (value left-blindness))
(type (value region))
(importance (value 1)))

(left-blindness (super-class (value roccipital))

(sub-class (value 1-blindness)
(importance 1)k

(type (value symptom))
(importance (value 1)))

(1-blindness (super-class (value left-blindness)l
(type (value observation)))

:close argument list
;close CONSTRUCT-FRAME-KB

- --- -A

/uaer/uqphil/utu/disaort/KB/disorderkb.Isp Sun Aug 30 15:16:47 1987

DISORDER KS.LSP is the knowledge base which contains a hierarchial
organTsation of organic brain disorders. Disorders are broken down into *

general types (i.e. Global, Focal, or Amnesic) which are
further sub-divided into specific disorders, each of which in tested for
probability by checking the associated tests or observations which are
children of the particular disorder frame.

;s**s **.t.s**************.*.

(CONSTRUCT-FRAME-KB '(

(DISORDER (SUPER-CLASS (VALUE NIL))
(SUB-CLASS (VALUE GLOBAL FOCAL AMNESIC))
(TYPE (VALUE MTA-FRAJME))
(IMPORTANCE (VALUE 1)))

(GLOBAL (SUPER-CLASS (VALUE DISORDER))
(SUB-CLASS (VALUE MULTI-ItFARCT-DEMENTIA ENCEPHALITIS ALZHEIMERS

SEVERE-HEAD-TRAUMA ALCOHOL TOXICITY FAKING))
(TYPE (VALUE DISORDER-CLASS))
(IMPORTANCE (VALUE 1M

(MULTI-INFARCT-DEMENTIA
(SUPER-CLASV (VALUE GLOBAL))
(SUB-CLASS (VALUE INSTANT)

(IMPORTANCE 1))
(TYPE (VALUE DISORDER))
(IMPORTANCE (VALUE 1)))

(ENCEPHALITIS(SUPER-CLASS (VALUE GLOBAL))
(SUB-CLASS (VALUE DAYS)

(IMPORTANCE 1))
(TYPE (VALUE DISORDER))
(IMPORTANCE (VALUE 1)))

(ALZHEIMERS
(SUPER-CLASS (VALUE GLOBAL))
(SUB-CLASS (VALUE MONTHS-YEARS SEVERE-LTM-DAMAGE)

(IMPORTANCE 1 1))
(TYPE (VALUE DISORDER))
(IMPORTANCE (VALUE 1)))

(SEVERE-LTM-DAMAGE

(SUPER-CLASS (VALUE ALZHEIMERS SEVERE-HEAD-TRAUMA ALCOHOL))
(TYPE (VALUE OBSERVATION)))

(SEVERE-HEAD-TRAUMA
(SUPER-CLASS (VALUE GLOBAL))
(SUB-CLASS (VALUE INSTANT SEVERE-LTM-DAAGE ACCIrTNT

(IMPORTANCE 1 1 1))
(TYPE (VALUE DISORDER))
(IMPORTANCE (VALUE 1)))

(ACCIDENT
(SUPER-CLASS (VALUE SEVERE-HEAD-TRAUMA HEAD-TRAUMA))
(TYPE (VALUE OBSERVATION)))

(ALCOHOL
(SUPER-CLASS (VALUE GLOBAL)) ;IS THIS SEVERE-LTM OR NOT???
(SUB-CLASS (VALUE MONTHS-YEARS SEVERE-LTM-DAMAGE ALCOHOLIC)

(IMPORTANCE 1 1 1))
(TYPE (VALUE DISORDER))
(IMPORTANCE (VALUE 1)))

(ALCOHOLIC
(SUPER-CLASS (VALUE ALCOHOL))
(TYPE (VALUE OBSERVATION)))

(TOXICITY (SUPER-CLASS (VALUE GLOBAL))
kSUB-CLASS (VALUE CHEMICAL-EXPOSURE)

(IMPORTANCE 1))
(TYPE (VALUE DISORDER))
(IMPORTANCE (VALUE 1)))

(CHEMICAL-EXPOSURE
(SUPER-CLASS (VALUE TOXICITY)) %
(TYPE (VALUE OBSERVATION)))

:IS FARING ASSOCIATED WITH ONLY GLOBAL DIFFICULTY?
(FAKING (SUPER-CLASS (VALUE GLOBAL))

(SUB-CLASS (VALUE FARING-IT)
(IMPORTANCE 1))

(TYPE (VALUE DISORDER))

a-|

2 /uev/hiL/t./iaszt/U/diord~~hb1up Sun Aug 30 15:16%47 1987

(IMPORTANCE (VALUE If)

(FAKING-IT
(SUPER-CLASS (VALUE FAKING))
(TYPE (VALUE OBSERVATION)))

:19 ALCOHOL A REFINEMENT OF TOXICITY OR 1S IT STRICTLY GLOBAL DISORDER

(INSTANT (SUPER-CLASS (VALUE MULTI-INFARCT-D)SMENTIA SEVERE-HEAD-TRAUMA
r TOXICITY HEAD-TRAUMA STROKE

(TYPE (VALUE OSERVA.TION))
(DAYS (SUPER-CLASS (VALUE ENCEPHALITIS PICKS))

(TYPE (VALUE SS RVATIOH)(
(MONTHS-YEARS

(SUPER-CLASS (VALUE ALEHEIMERS NORMAL-PRESSURE-HYDROCEPHALUS
SUPRANUCLEAR-PALSY ALCOHOL))

(TYPE (VALUE OBSERVATION)))

(FOCAL (SUPER-CLASS (VALUE DISORDER)) ;focal
(SUB-CLASS (VALUE FRONTAL HEAD-TRAUMA STROKE

TUMOR DEMYSLINATION))
(TYPE (VALUE DISORDER-CLASS))
(IMPORTANCE (VALUE I)))

(HEAD-TRAUMA (SUPER-CLASS (VALUE FOCAL)
(SUB-CLASS (VALUE INSTANT MINOR-LYM-DAMAGE ACCIDENT)

(IMPORTANCE 1 1 1))
(TYPE (VALUE DISORDER))
(IMPORTANCE (VALUE 1)))

(MINOR-LYM-DAMAGE
(SUPER-CLASS (VALUE HEAD-TRAUMA))
(TYPE (VALUE OBSERVATION))

(STROKE (SUPER-CLASS (VALUE FOCAL))
(SUB-CLASS (VALUE INSTANT)

(IMPORTANCE W)
(TYPE (VALUE DISORDER))
(IMPORTANCE (VALUE 1)))

(TUMOR (SUPER-CLASS (VALUE FOCAL))
(RUB-CLASS)YALUZ TUMOR-EVIDENCE) ;onset could be slow. or rapid

(IMPORTANCE 1
(TYPE (VALUE DISORDER))
(IMPORTANCE (VALUE I)))

(TUMOR-EVIDENCE
(SUPER-CLASS (VALUE TUMOR))
(TYPE (VALUE OBSERVATION)))

(DEMYELINATION
(SUPER-CLASS (VALUE FOCAL)) ;onset could be slow or rapid
(SUB-CLASS (VALUE DEMYELINATIDN-EVIDENCE(

(IMPORTANCE 1))
(TYPE (VALUR DISORDER))
(IMPORTANCE (VALUE 1)))

(DEMYELINATION-EVIDENCE
(SUPER-CLASS (VALUE DEMYELINATION()
(TYPE (VALUE OBSERVATION)))

(FRONTAL (SUPER-CLASS (VALUE FOCAL))
(SUB-CLASS (VALUE PICKS PARKINSONS NUNTINGYONS

NORMAL-PRESSURE-NYDROCEPNALUS SUPRANUCI.EAR-PALSY))
(TYPE (VALUE DISORDER-CLASS))
(IMPORTANCE (VALUE 11))

(PICKS (SUPER-CLASS (VALUE rRONTAL)l
(SUB-CLASS (VALUE DAYS BI-FRONTAL) ;bi-ftontal

(IM4PORTANCE 1 1))
(TYPE (VALUE DISORDER))
(IMPORTANCE (VALUE 1)))

(SI-FRONTAL (SUPER-CLASS (VALUE PICKS))
(SUB-CLASS (VALUE LEFT-FRONTAL RIGHT-FRONTAL)I

(IMPORTANCE 1 1))
(TYPE (VALUE OBSERVATION-CLASS))
(IMPORTANCE (VALUE 1)))

(LEFT-FRONTAL
(SUPER-CLASS (VALUE RI-FRONTAL))
(TYPE (VALUE OBSERVATION)))

(RIGHT-FRONTAL
(SUPER-CLASS (VALUE SI-FRON9TAL))
(IPS (VALUE OBSERVATION)))

(FRONTAL-SUB-CORTICAL with movement disorder to differentiate

3 /uuet/ahil/tu/dissert/XB/disord.K kb.lap Sun Aug 30 IS:16:46 1967

(PAREXERONE (SUPER-CLASS (VALUE FRONTAL)) ;tremor

(UD-CLASS VALUE SUCORTICAL
TREMOR)

(IMPORTANCE 1 1):
(TYPE (VALUE DISORDER(
(IMPORTANCE (VALUE 1)))

(SUSCORTICAL (SUPER-CLASS (VALUE PARKINSONS HUNTINGTOHS

NORMAL-PRESSURE-HYDROCEPHALUSSUPRAMUCLEAR-PALSY))
(SUB-CLASS (VALUE LEFT-SURCORTEX RIGHT-SUBCORTEX)

(IMPORTANCE 1 1))
(TYPE (VALUE OBSERVATION-CLASR((
(IMPORTKNCE (VALUE 1((l

(LEFT-SURCORTEX
(UPER-CLASS (VALUE SURCORTICAL))
(TYP (VALUE 8SSERVATION(((

(RIGNT-StINCORTEX
(SUPER-CLASS (VALUE SUSCORTICAL))
(TYPE (VALUE OBERVATION))(

(TREMOR

(SUPER-CLASS (VALUE PARKINSONS((TypE (VALUE OBSERVATION(((

(HUNTINGTONS (SUPER-CLASS (VALUE FRONTAL)) ;qen~tic (parents)

(SUB-CLASS (VALUE SUBCORTICAL GENETICS HYPER-ACTIVITY((
(TYPE (VALUE DIIORDER((
(IMPORTANCE (VALUE 1)(

(GENETICS (SUPER-CLASS (VALUE HUNTINGTONS))
(SUB-CLASS (VALUE GENETIC-HISTORY)

(IMPORTANCE 1))
(TYP (VALUE OBSERVATION-CLASS))
(IMPORTANCE (VALUE 1)))

(GENETiC-NISTORT (SUPER-CLASS (VALUE GENETICS))
(TYPE (VALUE OBSERVATION)))

(HYPES-ACTIVITY
(SUPER-CLASS (VALUE NUNTINGTONS((
(SUB-CLAS S (VALUE CHOREA) ;dancinlg

(IMPORTANCE 1)

(TYPE (VALUE OSERVATION-CLASS((
(IMPORTANCE (VALUE 1()()

(CHOREA (SUPER-CLASS (VALUE HYPER-ACTIVITY((
(TYPE (VALUE ORSERVATION(((

(NORNAL-PRESSURE-HYDROCEPHALUS

ISUPER-CLASS (VALUE FRONTAL))
(:s- CLASS (VALUE SUBCORTICAL OLDER-THAN-60 MONTHS-YEARS)

(IMPORTANCE,1,1 1((
(TYPE (VALUE VISORDER(
(IMPORTANCE (VALUE 1)))

(OLDER-THAN-6 0

(SUPER-CLASS (VALUE NORMAL-PRESSURE-HYDROCEPHALUS()
(TYPE (VALUE OBSERVATION)))

(SUPRANUCLEAR-PALSY

(SUPER-CLASS (VALUE FRONTAL))
SUB- CLASS (VALUE SURCORTICAL MONTHS-YEARS

CANNOT-MOVE-EYES-UPWASD

B LAxK-rACIAL-EXPRESSION)(IMPORTANC E 1 1 1 1))
(TYPE (VALUE DISORDER))
(IMPORTANCE (VALUE 1M)

(CANNOT-MOVE-E'LES-UPWARO
(SUPER-CLASS (VALUE SUPRANUCLEAR-PALSY))
(TYPE (VALUE OBSERVATION)))

(BLANK-FACIAL-EXPRESS ION

(SUP ER-CLASS (VALUE SUPRANUCLEAR-PALSY
(TYPE (VALUE OBSERVATION)))

(AMNESIC (SUPER-CLASS (VALUE DISORDER))

(SUB-CLASS (VALUE KORSAEOFFS((
(TP (VALUE XISORDER-CLASS((
(IMPORTANCE (VALUE 1)(1

(KORSAKOFFS (SUPER-CLASS (VALUE STM((
(SUB-CLASS (VALUE STM-OOO-IQ APATHETIC)

(IMPORTANCE 1 1;;
(TYPE (VALUE DISOR DER(

4 /uer/bll/tu/lssrt/g/d~ord~~hb1.p Sun Aug 30 15:16:48 1987

(INPORTANCE (VALUE 1)))

(STI4-GOOD-ZQ

(TSUPER-CLASS jVKLUE KoRR&\KorrS(
Typ (VALUE 0SERVATION))

(APATHETIC

(SUPER-CLASS (VALUE KO RSAKOFFS))(YPE (VALUE 0DSRVATXON())

:lo:: parameoterlist
;cos CNTRCT-RAME-KB

SECTION 12.3

PHOTOGRAPHY DICTIONARY AND KNOWLEDGE BASE

.... w J'-d L- - .--- I~~w L L'- '"=',,' --"m • h" m - . -I .- i

photo.dict Sun Aug 30 15:35:11 1987

MODULE: PHOTOGRAPHY LEXICON
PURPOSE: To erase any current dictionary and load in a lexicon of

photographic terminology.

OWNER: copywrite Mark T. Maybury, July, 1987.

FORMAT: (token syntax sematics realization A "

(erase-dictionary) defined in makedictionary
(mepc 'aake-dictionary-entry '(

FORMAT: (syntax sematics realization >

NUMBERS

(one (number sing3p) (lexical representation of number 1) one)
(two (number plur) (lexical representation of number 2) two)
(three (number plur) (lexical representation of number 3) three)
(four (number plur) (lexical representation of number 4) four)
(five (number plur) (lexical representation of number 5) five)

(six (number plur) (lexical representation of number 6) six)
(seven (number plur) (lexical representation of number 7) seven)
(eight (number plur) (lexical representation of number 8) eight)
(nine (number plur) (lexical representation of number 9) nine)
(ton (number plur) (lexical representation of number 10) ten)

PROPER NOUNS I

(mark (proper-noun sing3p masculine) me mark)

(michelle (proper-noun sing3p feminine) her michelle)

VERBS

; ** the verb "to be"

(be (verb copula sing pra pl)

(L (P) (L (WN) (_P (L (_y) (equal WH y))))) am)
(be (verl copula-sing3p pros p3)

(L (P) (L (_WH) (_P (L (_y) (equal _WH _y)))}) is)
(be (verb copula plur pros p3)

(L (_P) (L (_WH) (_P (L (_y) (equal _WH _y))))) are)

(have (verb have-v sing pros pl) (to own or posess) have)
(have (verb have-v plur pres pl) (to own or posess) have)
(have (verb have-v sing3p pros p3) (to own or posess - irregular 3p sing) has)

(contain (verb trans plur pros p3) (restricted or otherwise limited) contain)

(contain (verb trans sing3p pros p3) (restricted or otherwise limited) contain)

(indicate (verb trans singlp pros pl) (telling) indicate)
(indicate (verb trans plur pres p3) italling) indicate)

(function (verb trans sing3p pros pl) (telling) function)

(function (verb trans plur pros p3) (telling) function)

NOUNS

; Photographic Fault Classification/Equipmen.

(format (noun count sing3p neuter) format format)
(location (noun count sing3p neuter) location location)

(process (noun count sing3p neuter) process process)
(art (noun count sing3p neuter) art art)
(art-form (noun count sing3p neuter) art-form art-form)

(visual (noun count sing3p neuter) visual visual)
(images (noun mass sing3p neuter) images images)
(equipment (noun mass sing3p neuter) equipment equipment)
(technique (noun mass sing3p neuter) technique technique)
(style (noun mass sing3p neuter) style style)

(illumination (noun mass sing3p neuter) illumination illumination)

2 photo.dict Sun Aug 30 15:35:12 1987

(light (noun count sing3p neuter) light light)

(intensity (noun noun sing3p neuter) intensity intensity)

(lighting (noun mass sing3p neuter) lighting lighting)

(tripod (noun count sing3p neuter) tripod tripod)
(camera (noun count sing3p neuter) camera camera)
(logs (noun count plur neuter) legs logs)
(subject (noun count sing3p neuter) subject subject)

(body (noun count sing3p neuter) body camera-body)

(film-winder (noun count sing3p neuter) film-winder film-winder)

(shutter (noun count sing3p neuter) shutter shutter)
(casing (noun count sing3p neuter) casing casing)

(lens (noun count sing3p neuter) lens lens)
(diaphram (noun count sing3p neuter) diephram diaphram)

(optical-lens (noun count sing3p neuter) optical-lens optical-lens)

(controls (noun count plur neuter) controls controls)
(aperture (noun count sing3p neuter) aperture aperture)

(focal-distance (noun count sing3p neuter) focal-distance focal-distance)

(film (noun mess sing3p neuter) film film)
(asa (noun count sing3p neuter) asa Asa)
(film-color (noun count sing3p neuter) (color or b/w) film-color)

(film-type (noun count sing3p neuter) (slide or print) film-type)
(image-type (noun count sing3p neuter) (slide or print) image-type)

(lighting (noun count sing3p neuter) lighting lighting)

(no-flash (noun mass sing3p neuter) no-flash no-flash
(excess-sun (noun mass sing3p neuter) excess-sun excess-sun)

(composition (noun count sing3p neuter) composition composition)

(no-subject-balance (noun mass sing3p neuter) i,.-subject-balanca no-sulJect-balance)

(bad-positioning (noun mess sing3p neuter) bad-positioning bad-camera-positioning)

(operation (noun count sing3p neuter) operation operation)

(settings (noun mass plur neuter) settings settings)

(lens-cap (noun mass sing3p neuter) lens-cap lens-cap)
(film-loading (noun mass sing3p neuter) film-loading film-loading)

(region (noun count sing3p neuter) region region)

(expression (noun mass sing3p neuter) expression expression)
(personal (noun mass sing3p neuter) personal personal)

(exposure (noun mass sing3p neuter) exposure exposure)

(setting (noun count sing3p neuter) setting setting)

; capabilities/symptoms

(photography (noun mass sing3p neuter) photography photography)

(protection (noun mass sing3p neuter) protection protection)
(light-pictures (noun mass sing3p neuter) light-pictures light-pictures)
(dark-pictures (noun mass sing3p neuter) dark-pictures dark-pictures)

(lack-of-detail (noun mass sing3p neuter) lack-of-detail lack-of-detail)
(blurred-pictures (noun mass sing3p neuter) blurred-pictures blurred-pictures)
(no-film-loaded (noun mass sing3p neuter) no-film-loaded no-film-loaded)

(example (noun mass sing3p neuter) example example)
(medium (noun count sing3p neuter) medium medium)
(object (noun count sing3p neuter) object object)

(physical (noun mass sing3p neuter) physical physical)

(component (noun count sing3p neuter) component component)
(attribute (noun count sing3p neuter) attribute attribute)

(existence (noun mass sing3p neuter) existence existence)
(method (noun count sing3p neuter) method method)

(wind-film (noun mass sing3p neuter) wind-film wind-film)
(support (noun mass sing3p neuter) support support)

(introduce-light (noun mass sing3p neuter) introduce-light light-introduction)
(focusing (noun mass sing3p neuter) focusing focusing)

(manipulation (noun mass sing3p neuter) manipulation manipulation)

(recording (noun mass sing3p neuter) recording recording)

(impression (noun mass sing3p neuter) impression impression)

(control (noun mass sing3p neuter) control control)
(clarity (noun mass sing3p neuter) clarity clarity)

(winding-spool (noun mass sing3p neuter) winding-spool winding-spooD

(angle (noun count sing3p neuter) angle anglo)

(black-white (noun mass sing3p neuter) black-white black-white!

(color (noun mass sing3p neuter) color color)

(infra-red (noun mass sing3p neuter) infra-red infra-red)

(function (noun count sing3p neuter) function function)

(instrument (noun count sing3p neuter) instrument instrument)
(disorder (noun count singp neuter) disorder fault)
(fault (noun count plur neuter) fault fault)

(fault (noun count sing3p neuter) fault fault)
(failure (noun count plur neuter) failure failure)

(failure (noun count sing3p neuter) failure failure)

(decision (noun count 1 neuter) decision decision)
(diagnosis (noun count sing3p neuter) diagnosis decision)
(human (noun count I neuter) human human)

(name (noun count 1 neuter) name name)
(class (noun count 1 neuter) class class)
(sub-class (noun count I neuter) sub-class sub-class)

3 photo.dict Sun Aug 30 15:35:12 1981

(type (noun count 1 neuter) type type)
(dda (noun count I neuter) dda dda)

(damage (noun mass sing3p neuter) damage damage)
(entity (noun count sing~p neuter) entity entity)
(importance (noun count singp neuter) importance importance)
(observation (noun count 1 neuter) observation observation:
(symptom (noun count 1 neuter) symptom symptom)
(test (noun count I neuter) test test)
(value (noun count singlp neuter) value value)
(likelihood (noun count sing3p neuter) likelihood likelihood)
(result (noun count sing3p neuter) result result)

ADJECTIVES I

(artificial (noun count 1 neuter) artificial artificial)
(different (adjective attributive) different different)
(natural (noun count 1 neuter) natural natural)
(physical (adjective attributive) physical physical)
(relative (adjective attributive) relative relative)
(similar (adjective attributive) similar similar)
(visual (adjective attributive) visual visual)
(precise (adjective attributive) precise precise)
(alluminum (adjective attributive) alluminum alluminum)

(traditional (adjective attributive) traditional traditional)
(contemporary (adjective attributive) contemporary contemporary)
(nouveau (adjective attributive) nouveau nouveau)
(no (adjective attributive) no no)

(damaged (adjective attributive) damaged damaged)
(slow (adjective attributive) slow slow)
(fast (adjective attributive) fast fast)

DETERMINERS I

; ** articles
(a (determiner count sing3p indefart notof noneg nonum) (article before consonant) a)
(an (determiner count sing3p indefart notof nonag nonum) (article before vowel) an)
(the (determiner count 1 defart notof noneg nonum) (sing/plur form of the) the)

PREPOSITIONS I

(to (proposition) (toward or in the direction of) to)
(on (preposition) (outer location or on top of) on)
(in (preposition) (inner or inward location) in)
(with (preposition) (connection or association) with)
(from (preposition) (place of origin) from)
(of (preposition) (place of origin) of)
(for (preposition) (indicating purpose) for)

(located (preposition located-in) (located-in) located)
(in (preposition located-in) (located-in) in)

PRONOUNS

(he (pronoun pars sing3p subj p
3
masculine) (male) he)

(she (pronoun pars sing3p subj p3 feminine) (female) she)
(it (pronoun pers siuig3p subj p3 neuter) (a thing) it)
(they (pronoun pers plur subj p3 neuter) (a group of others) theo'

(him (pronoun pars sing3p obj p3) (a male viewed obectx-ely) homr
(her (pronoun pars sing3p obj p3) (a female i-ecd objectively, h ilr
(it (pronoun pers sing3p obj p3) (a thin? viewed objectively'* it-

(them (pronoun pers plur obj p3) (a group of others) them)

(his (pronoun pose sing3p obj p3) (belonging to a male viewed ob~ectiel;y h-
(her (pronoun poss sing3p obj p3) (belonging to a female viewed objectivelyi her)
(its (pronoun pose sing3p obj p3) (belonging to a thing viewed objectively) its)
(their (pronoun posS plur obj p3) (belonging to a group of others) their)

(his (pronoun pose singlp subj p
3
) (belonging to a male viewed subjectively) his)

(hers (pronoun poss sing3p subj p3) (belonging to a female viewed subjectively) hers)
(its (pronoun poss sing3p subj p

3
) (belonging to a thing viewed subjectively) its)

(theirs (pronoun pose plur subj p3) (belonging to a group of others) theirs)

** relative pronouns
(that (pronoun rel) (The ball that is red) that)
(who (pronoun rol) (The patient who died) who)

4 photo.dict Sun Aug 30 15:35:13 1987

(which (pronoun rel) (The book which burned) which)

demonstrative pronouns

(thie (pronoun demonstr sIng3p) (this book) this)
(that (pronoun demonstr sing3p) (that book) that)
(these (pronoun demonstr plur) (these books) these)
(those (pronoun demonstr plur) (those books) those)

PUNCTUATION

(comma (comma) comma comma)

(period (period) period period)
(colon (colon) colon colon)
(exckamation-point (exclamation-point) exclamation-point exclamation-point)

(question-mark (question-mark) question-mark question-mark)

CONJUNCTIONS

(and (conjunction coord) (intersection) and)
(or (conjunction coord) (union) or)
(but (conjunction coord) (qualification) but)
(before (conjunction subord) (pre-temporal) before)

(after (conjunction subord) (post-temporal) after)

(because (conjunction subord) (causality) because)

CONNECTIVES

(for (connective for-example) for for)
(example (connective for-example) example example)
(instance (connective) instance instance)
(therefore (connective) therefore therefore)
(because (connective) because because)

dL))

pbeto.kb Sun Aug 30 15:36z30 1987

MODULE: PHOTOGRAPHY FRAME KNOWLEDGE BASE
PURPOSE: To reprensent knowledge of photography.
OWNER: copywrite Mark T. Maybury. July, 1987.
* Special thanks to photographic consultant Neil Russel, CUED.
REFERENCE: Knowledge Structures from [Minsky, 19753, frame representationl
* formaliAsm.

PHOTO.SB contains a model of the photography process brain which is
* organized as a hierarchy of faults. Fault diagnosis is broken down

into equipment analysis, technique evaluation and style investigation.
* Each of these aroe are subject to several tests or observations.

KNOWLEDGE RELATIONSHIPS from SLOTS
* super/sub-class slots -- part/whole
* type slot -- type/instance
(mechanisms for inheritance of properties)

(construct-frame-kb

(expression
(super-class (value nil))
(sub-class (value photography painting eating))
(dde (value (attribute requires-talent))
(type (value process)))

(photography (super-class (value expression))
(sub-class (value equipment technique style))
(type (value art-form))
(dde (value (function images recording) (external-location film)))
(importance (value 10))
(damage (value 5)))

(equipment (super-class (value photography))
(sub-class (value camera lighting tripod))
(type (value fault))
(dde (value (instrument function physical)

(location camera)))
(importance (value 3))(damage (value d))

(tripod (super-class (value equipment))
(sub-class (value nil))
(type (vlue instruent))
)dda (value (instrumnt legs alluminum)

(vlu function support camera))
(importance (au)
(damage (value 1);1

(lighting (super-class (value equipment))
(sub-class (value nil))
(type (value instrument))
(dda (value (function illumination)

(location subject)
(importance (value 5))
(damage (value 9)))

(camera (super-class (value equipmient))
(sub-class (value body lens file)
(type (value instrument))
)dda (value (function images iecording) (extarnal1- -i n nil
(importance (value 9))
(damage (value 4))

(body (super-class (value equipment))
(sub-class (value film-winder shutter casing))
(type (value component)
(dda (value (function support))
(importance (value 9))
(damage (value 2))

(file-winder (super-class (value body))
(sub-class (valus nil)
(type (value compontent)
(dde (value (function wind-film) (location body)))
(importance (value 9))

A

2 photo.kb Sun Aug 30 15:36:30 1987

(damage (value 6))

(shutter (super-class (value body))
(sub-class (value light-pictures dark-pictures blurred-pictures))
(type (value component))

(dda (value (function introduce-light)

(location body))
(importance (value S))

(damage (value 2)))

(casing (super-class (value body))

(sub-class (value light-pictures)

(type (value component))
(dds (value (function protection film)))

(importance (value 1))

(damage (value 5)))

(lens (super-class (value equipment))
(sub-class (value diaphram optical-lens controls))
(type (value component))
(dda (value (function focusing) (location body)))

(importance (value 3))

(damage (value 7)))

(diaphram (super-class (value lens))
(sub-class (value))
(type (value component))

(dda (value (function introduce-light) (location lensil)

(importance (value 1))

(damage (value 3)))

(optical-lens (super-class (value lens))

(sub-class (value light-pictures dark-pictures blurred-pictures))
(type (value component))
(dde (value (function focusing) (location camera)))

(importance (value 9))

(damage (value 2)))

(controls (super-class (value lens))
(sub-class (value aperture focal-distance))

(type (value component))
(dda (value (function manipulation) (location lens)))
(importance (value 2))

(damage (value 9)))

(aperture (super-class (value controls))

(sub-class (value light-pictures dark-pictures))
(type (value component))

(dds (value (function control intensity none nil light)
(location lens)))

(importance (value 10))

(damage (value 5)))

(focal-distance

(super-class (value controls))

(sub-class (value nil))

(type (value component))
(dda (value (function focusing) (location controls)))

(importance (value 6))

(damage (value 3)))

(film (super-class (value equipment))

(sub-class (value image-type film-type asa))
(type (value component))

(dds (value (function recording) (location body)))

(importance (value 4))

(damage (value 41))

(image-type (super-class (value film))
(sub-class (value bad-color light-pictures dark-pictuies -
(type (value attribute),
(dds (value (function film))

(importance (value 8))

(damage (value 6)))

(film-type (super-class (value film))

(sub-class (value black-white color infra-red))
(type (value attribute))
(dda (value (function) (location
(importance (value 2))

(damage (value 7)))

(ass (super-class (value film))
(sub-class (value light-pictures dark-pictures))

(type (value attribute))
(dda (value (function setting exposure)))

:-p

3 photo.kb Sun Aug 30 15:36:31 1987

(importance Ivalue 3))
(damage (value 2)))

(technique (super-class (value photography))
(sub-class (value lighting composition operation))
(type (value fault))
(dde (value (instrument method precise)))
(importance (value 4))
(damage (value 6)))

(lighting (super-class (value technique))
(sub-class (value natural artificial))
(type (value fault))
(dda (value (function impression) (instrument technique)))
(importance (value 10))
(damage (value 8)))

(composition Isuper-class (value technique))
(sub-class (value balance position))
(type (value fault))
(dda (value (function impression) (instrument technique)
(importance (value 1))
(damage (value 3))

(balance (super-class (value composition))
(sub-class (value inbalance))
(type (value fault))
(dda (value (instrument technique)))
(importance (value 1))
(damage (value 9)))

(position (super-class (value composition))
(sub-class (value (function angle) (instrument inbalance)))
(type (value fault))
(dda (value (instrument technique)))
(importance (value 3))
(damage (value 9)))

(operation (super-class (value technique))
(sub-class (value settings amovement lens-cap film-loading))
(type (value fault))
(dda (value (function control) (instrument camera)))
(importance (value 10))
(damage (value 5)))

(settings (super-class (value operation))
(sub-class (value dark-pictures light-pictures

blurred-pictures lack-of-detaill
(type (value fault))
(dda (value (function control)
(importance (value I))
(damage (value 4)))

(movement (super-class (value operation))
(sub-class (value blurred-pictures))
(type (value fault))
(dda (value (function clarity)))
(importance (value 2))
(damage (value 7)))

(lens-cap (super-class (value operation))
(sub-class (value dark-pictures))
(type (value fault))
(dda (value (function protection) (location lens)))

(importance (value 9))
(damoge (value 5)))

(film-loading(super-class (value operation))
(sub-class (value no-filmi,
(type (value fault))
(dda (value (function 1¢inding-vpool) (location camae,

-

(importance (value 2))
(damage (value 3)

(style (super-class (value photography))
(sub-class (value traditional contemporary nouveau))
(type (value fault))
(dda (value (instrument expression personal)))
(importance (value 9))
(damage (value 2)))

(traditional (super-class (value style))
(sub-class (value British American German French))
(type (value format)) ; style
(dda (value (function expression old-fashioned)))
(importance (value 1))

a-J

4 phote.kb Sun Aug 30 15:36:31 1987

(damage (value 5)M)

TS3TS AND OBSERVATIONS

(light-pictures

(super-class (value film-type ass aperture shutter casing

optical-lens settings))
(type (value observation))

(dda (value (instrument excess-light())
(importance (value 5))

(damage (value 6)))

(dark-pictures
(super-class (value lens-cap film-type ass

aperture shutter optical-lens settings))
(type (value observation,)
(dda (value (instrument lack-of-light)))
(importance (value 4))
(damage (value 8)))

(inbalance (super-class (value balance position))
(type (value observation))
(dda (value (instrument balance no)))
(importance (value 5))

(damage (value 3)))

(lack-of-detail

(supar-class (value settings))
(type (value observation))
(dda (value (instrument detail no)))

(importance (value 9))
(damage (value 5)))

(blurred-pictures
(super-class (value shutter optical-lons settings movement))
(type (value observation))
(dda (value (instrument clarity no(()

(importance (value 10)

(damage (value 1)))

(no-film (super-class (value film-loading))

(type (value observation))
(dda (value (instrument film no)))

(importance (value 7))

(damage (value 3)))

(bad-color (super-class (value film-color))
(type (value observation))
(dda (value (instrument color no)})

(importance (value l0))

(damage (value 5))

close frame list
close make frame kb

,4

- 2I

SECTION 13

SYSTEM OUTPUT

What_1s_a_brai?_arlYrun Tue sep 1 11:55:00 1967

Frans Lisp, Opus 38.79
-) (load mil

IlIad supp:!:-,!(l oa d /user/aphil/mtm/lisp/liepaids/eacfos.lj
(l oa d /user/mphil/atm/lisp/lispaids/io.l I
fleod /ussr/mphil/a/lisp/lispaids/stack-1l
(lead /ua~r/mphil/atm/lisp/samantics/aave.l I
(lead /ussr/aphil/mtm/lisp/lispaids/track.l(
(lead focus.lI
(load anaphora.l(
(lead kb interfac.l
(load /uaer/mphil/atm/diassert/R5/f races .lapj

(load /user/:phil/:tm,'di::ert/KB/constructkb.lspI
(load /user/ phil/ tm/di srt/K5/f rams_access .1
(load prodicateslI1
(load text.lj
(load tranalate.lj
(load rslationalgram.lI
(fael generate.o(

(load realisation.lI(load aorphsy.1(
(load surface_form.ll
(load dictionary.l(
(load /user/mphil/mtm/lisp/dictionary/dictionarymacrOs.l
(load grammar]
(load dict(
(load kb.l(

-, (main)

Welcome to the GENNY text generation system for expert systems.
GENRI was designed to answer questions of the form:

-Wh a t is an X?
-Why did yo diagnose Y? or why does Y hava a problem?
-- What is the difference between X and Y'?

where X and I are entities within the provided knowledge base.

These three types of questions are indicated by the keywords!

DEFINE, EXPLAIN, and COMPARE, respectively.

Please enter the domain dictionary file name? neuropsychology.dict
(load nouropsychology.dict)

What is the domain of discourse? nouropsychology.kb
(load neuropsychology.kbl

Do you wish DEFINE, EXPLAIN, or COMPARE? define

What do you wish to know about? brain

TEXT SKETCH:

introduction
description
example

GENERATE RELEVANT KNOWLEDGE POOL

GENERATE DISCOURSE SKETCH:

(definition attributive constituent illustration)

GLOBAL FOCUS (TOPIC) -- > brain

LOCAL FOCUS CHOICES (FF/CF/PF) -=> (brain)
SELECTION --)

(definition ((brain))
((organ))
((ocation (skull human)) (function (understanding)))

LOCAL FOCUS CHOICES (FF/CF/PF) -> (organ brain (brain))
SELECTTOW ..
(attributive ((brain)) ((value importance indef ten)))

LOCAL FOCUS CHOICES (FF/CF/PF) c-> (value brain (brain) (brain))
SELECTION ec)
(conatituent ((brain))

((region two none))
nil
((left-hemisphere) (right-hemisphere)))

LOCAL FOCUS CHOICES (FF/CF/PF(--> (region left-hemisphere right-hemisphore brain (brain))brai

what is-a brain?_narl.rua Tue Sep 1 11:55:01 1987

n) (brain))
SELECTION -->
(illustration ((left-hmisphere))

((function feature-recognition))
((location (brain))))

-mmuiRHETORICAL PREDICATE

(definition ((brain))

(organ))

((location (skull human)) (function (understanding))))

PRAGMATIC FUNCTION (discourse-topic-entity/focus/given)

((brain) (nil (brain) (organ)) nil)

SEMANTIC FUNCTION :
action agent patient inst loc funct manner time
(be ((brain)) ((organ)) nil (skull human) (understanding) nil nil nil)

RELATIONAL FUNCTION (voice end form) : (active)

LEXICAL INPUT TO SENTENCE GENERATOR:
((a

((determiner count sing3p indefart notof noneg nonum)
(article before consonant)
a))

(brain ((noun count 1 neuter) region brain))
Tbe ((copula plur pros p3)

(L (_P) (L (_WH) (_P (L (_y) (equal _WH _y)))))
are)
((copula sing3p pros p3)
(L (_P) (L (_WN) (_P (L (y) (equal WH _y)))
is)
((copula sing pros pl)
(L (_P) (L (WH) (_P (L (_y) (equal _WH _y)))
am))

(an
((determiner count sinq3p indefart notof nonog nonum)
(article before vowel)
an))

(organ ((noun count 1 neuter) (call-based functioning sub component) organ))
(for ((connective for-example) for for)

((preposition) (indicating purpose) for))
(understanding ((noun mass 1 neuter) consciousness understanding))
(located ((proposition located-in) (located-in) located))
(in ((preposition located-in) (located-in) in)

((preposition) (inner or inward location) in))
(the
((determiner count 1 defart notof noneg nonum) (sing/plur form of the) the))

(human ((noun count 1 neuter) human human))
(skull ((noun count 1 neuter) (cranial container and protector) skull)))

SYNTAX OUTPUT FROM SENTENCE GENERATOR:

((s declarative active)
()np sinq3p p3 neuter)
((determiner count sing3p indefart notof noneg nonum) ((a)))
)(nl sing3p neuter) ((noun count sing3p neuter) ((brain)))))

((vp sing3p p3 pros active)
((copula sing3p pros p3) ((is)))
((np sing3p p

3
neuter)

((op sing3p p
3

neuter)
((op sing3p p

3
neuter)

((determiner count sing3p indefart notof nonel nonum) 1(an)))
((nl sing3p neuter) ((noun count sing3p neuter) ((organ))))

((PP)
((proposition) ((for)))
((op 111 p3 neuter(((noun mass sing3p neuter) ((understanding))))))

((pp)
((preposition located-in) ((located)))
((proposition located-in) ((in)))
((np 33 p3 neuter)
((determiner count 21 defart notof noneg nonum) ((the)))
((hl 33 neuter)
((noun count 27 neuter) ((human)))
((noun count 33 neuter) ((skull)))))))))

((a declarative active)
((np sing3p p3 neuter)

3 what_18_a-braiu7-early.ruu TUe Sep 1 11:55:01 1987

((determiner count sing3p indefart notof noneg nonum? ((a)))
fbil sing3p neouter) ((noun count sing3p neuter) ((brain)))))

U(vp sing3p p3 pros active)
((copula sing3p pros V3) M(s)))
()np, sing3p p3 neuter)
((np sing3p p3 neuter)
A)daterminer count singip indofart notof noneg nonum) ((an)))
((ni sing3p neuter) ((noun count aing3p neuter) ((organ)))))

((p1')
((preposition) ((for)))
flnp III p3 neuter)
((np 1ll p3 neuter) ((noun mass sing3p neuter))Iundersthnding))))
((p)

(preposition located-in) ((located)))
)(proposition located-in) ((in)))
))np 33 p3 neuter)
((determiner count 21 defart notot noneg nonue) ((the))
((nl 33 neuter)
((noun count 27 neuter) (jbuman)))
((noun count 33 neuter) ((skullflmmfll)

t

PRAGMATIC FUNCTION)discourse-topic-antity/focus/given)

((brain) ((brain)) (brain) (value)) (brain organ))

SEMANTIC FUNCTION:
action agent patient inst 1cc fundt manner time
(have ((brain)) ((value importance indef ten)) nil nil nil nil nil nil)

RELATIONAL, FUNCTION (voice and form) :(active)

LEXICAL INPUT TO SENTENCE GENERATOR:
((it ((pronoun pers sing3p subj p3 neuter) (a thing) it))
(have ((have sing3p pros p3) (to own or posess - irregular 13pi sing) has)

((have plur pres p1) (to own or posess) have)
((have sing pros p1) (to own or posses) have))

(an
((determiner count sing3p indefart notof noneq nonua(
(article before vovel)
an))

(importmnce ((noun count 1 fleuter) importance importance))
(value ((noun count 1 neuter) value value))
(of ((preposition) (place of origin) of))
(ten ((number plur) (lexical representation of number 10) ten)))

SYNTAX OUTPUT FROM SENTENCE GENERATOR:

(((declarative active)
((np sing3p p3 neuter) ((pronoun pars sing3p subj p3 neuter) ((it))))
((up sing3p p3 pros active)
((have sing3p pros p3) ((has)))
)(np sing3p p3 neuter)
((np singip p3 neuter)
((determiner count singlp indefart hotof noneg nonum) ((on)))
((nI uing3p neuter)
((noun count 3 neuter) (?imsportance))
((noun count sing3p neuter) (('alueH)?1?

((p1') ((preposition) ((of))) ((number plut) 1ten)111)
t

((region two none))
nil
((left-hemisphere) (right-hemisphere)))

PRAGMATIC FUNCTION (discourse-topic-entity/focus/given)

(brain)

4 what_is_a_brain?_oarly.run Tue Sep 1 11:55:02 1987

(((brain) (brain)) (brain) (region left-hemisphere right-hemisphere))
(brain value organ))

SEMANTIC FUNCTION :
action agent patient inst loc funct manner time
(contain ((brain))

((region two none))
nil
nil
nil
((left-hemisphere) (right-hemisphere)

nil

nil)

RELATIONAL FUNCTION (voice and form) : (active colon-insertion)

LEXICAL INPUT TO SENTENCE GENERATOR:
((it ((pronoun per* sing3p subj p3 neuter) (a thing) it))

(contain ((trans 1 pros 2) (restricted or otherwise limited) contain))

(two ((number plur) (lexical representation of number 2) two))

(region ((noun count I neuter) region region))

(colon ((colon) colon colon))

(the
((determiner count 1 defect notof noneg nonum) (sing/plur form of the) the))

(left-hemisphere ((noun count sing3p neuter) region left-hemisphere))

(and ((conjunction coord) (intersection) and))

(the

((determiner count 1 defect notrf noneg nonum) (sing/plur form of the) th.'

(right-hemisphere ((noun count sing3p neuter) region right-hemisphere)))

SYNTAX OUTPUT FROM SENTENCE GENERATOR:

(((a declarative active)
((np sing3p p3 neuter) ((pronoun pars sing3p subj p3 neuter) ((it))))

((vp sing3p p3 pros active)

((trans sing3p pros 6) ((contain)))

((np plur p3 neu~ei)
((np plur p3 neuter)

((number plur) ((two)))

((nl plur neuter) ((noun count plur neuter) ((region)))))

((colon) ((colon)))

((np sing3p p3 neuter)

((np sing3p p
3
neuter)

((determiner count 21 defect notof noneg nonum) ((the)))

((nl sing3p neuter) ((noun count sing3p neuter) ((left-hemisphere)))))

((conjunction coord) ((and)))
((np sing3p p3 neuter)

((determiner count 27 defect notof noneg nonum) ((the)))

((nl sing3p neuter)

((noun count sing3p neuter) ((right-hemisphere))))))))

((s declarative active)
((np sing3p p3 neuter) ((pronoun pars sing3p subj p3 neuter) ((it))))

((vp sing3p p3 pros active)

((trans sing3p pros 6) ((contain)))
((np plur p3 neuter)
((np plur p3 neuter)

(np plur p3 neuter)
((number plur) ((two)))

((nl plur neuter) ((noun count plur neuter) ((region)))))

((colon) ((colon))

((np sing3p p3 neuter)
((determiner count 21 defect notof noneg nonum) ((the)))
((nl sing3p neuter)
((noun count sing3p neuter) ((left-hemisphere)))1))

((conjunction coord) ((and)))
((np sing3p p3 neuter)
((determiner count 27 defect notof noneo no0um0 0 ithe)))

((nl sing3p neuter)
((noun count sing3p neuter) ((right-hemisph-re1)

t

..
RNETORICAL PREDICATE - e---e

(illustration ((left-hemisphere))
((function feature-recognition))

((location (brain))))

PRAGMATIC FUNCTION (discourse-topic-entity/focus/given)

Ahk

3 what ismbrain?marly.rou Tue Sop 1 11:55:02 1987

((left-hemisphere)
(((brain) (brain) (brain)) (left-hesisphere) (feature-recognition))
(brain region left-hemisphere right-hemisphere value organ))

SEMANTIC FUNCTION :
action agent patient inst loc funct manner time
(have ((left-hemisphere))

((function feature-recognition))
nil
(brain)
nil
nil
nil
nil)

RELATIONAL FUNCTION (voice and form) : (active example-insertion)

LEXICAL INPUT TO SENTENCE GENERATOR:
((the

((determiner count 1 defert notof noneg nonum) (sing/plur form of the) the))
(left-hemisphere ((noun count sing3p neuter) region left-hemisphere))
(comma ((comma) comma comma))
(for ((connective for-example) for for)

((preposition) (indicating purpose) for))
(example ((connective for-example) example example)

((noun mass 1 neuter) example example))
(comma ((comma) comma comma))

(have (have sing3p pres p3))to own ot posess - irregular 13pi sing) has)
((have plur pres pl) (to own or posses) have)
((have sing pros pl) (to own or posses) have))

(the
((determiner count 1 defart notof noneg nonum) (ting/plur form of the) the))
(feature-recognition ((noun mass 1 neuter) function feature-recognition))
(function ((noun count 1 neuter) function function)

((verb trans 1 pres 2) (telling) function))
(located ((preposition located-in) (located-in) located))
(in ((preposition located-in) (located-in) in)

((preposition) (inner or inward location) in))

(it ((pronoun pets sing3p subj p
3

neuter) (a thing) it)))

SYNTAX OUTPUT FROM SENTENCE GENERATOR:

(((s declarative active)
((np sing3p p3 neuter)
((np sing3p p3 neuter)
((determiner count 3 defsrt notof noneg nonum) ((the)))
(inl sing3p neuter) ((noun count sing3p neuter) ((left-hemisphere)))))

((comma) ((comma)))
((rel for-essmple)
((connective for-example) ((for)))
((connective for-example) ((example))))

((comma) ((comma))))
((vp sing3p p3 pres active)
((have sing3p pres p

3
) ((has)))

((np 27 p
3
neuter)

((np 27 p3 neuter)
((determiner count 15 defart notof noneg nonum) ((the)))
((nl 27 neuter)
((noun mass 21 neuter) ((feature-recognition)))
((noun count 27 neuter) ((function)))))

((pp)
((preposition located-in) ((located)))
((preposition located-in) ((in)))
((np sing3p p3 neuter) ((pronoun pers sing3p subj p

3
neuter) (it

t

DISCOURSE STRUCTURE + FOCUS + GIVEN

(((definition ((brain))
((organ))
((location (skull human)) (function fundeistanding))

(nil (brain) (organ))
nil)
((attributive ((brain)) ((value importance indef ten)))
(((brain)) (brain) (value))
(brain organ))

((constituent ((brain))

((region two none))
nil

((left-hemisphere) (right-hemisphere)))
(((brain) (brain)) (brain) (region left-hemisphere right-hemisphere))
(brain value organ))
(illustration ((left-hemisphere))

whatLaa_brain?_early.zun Tue Sep 1 11:55:02 1987

((function feature-recognition))
((location (brain))))

(brain) (brain) (brain)) (left-hemisphere) (feature-recognition))
(brain region left-hemisphere right-hemisphere value organ)))

MESSAGE REALIZATION
((a brain is an organ for understanding located in the human skull)
(it has an importance value of ten)
(it contains two regions colon the left-hemisphere and the right-hemisphere)
(the left-hemisphere

comma
for
example
comma
has
the
feature-recognition
function
located
in
it)

SURFACE FORM

A brain is an organ for understanding located in the human skull.
It has an importance value of ten.
It contains two regions: the left-hemisphere and the right-hemisphere.
The left-hemisphere, for example, has the feature-recognition fun~tion located in it.
t
-> (exit)

b4

.. - + A..A- d L b .. .- W-

gonayl.out Tue Sop 1 11:27:16 1987

Frans Lisp, Opus 38.79
-> (include main)
(feel main.el

Welcome to the GENNY text generation system for expert systems.
GENNY was designed to answer questions of the form:

-- Whet is an X?
-- Why did you diagnose Y? or Why does Y have a problem?
-- Whet is the difference between X and Y?

where X and Y are entities within the provided knowledge base.

These three types of questions are indicated by the keywords:
DEFINE, EXPLAIN, and COMPARE, respectively.

Please enter the domain dictionary file name? neuropsychology.dict
(load neuropsychology.dict]

What is the domain of discourse? neuropsychology.kb
[load neuropsychology.kb[

Do you wish DEFINE, EXPLAIN, or COMPARE? define

What do you %Inh to know about? brain

TEXT SKETCH:

introduction
description
example

SELECT KNOWLEDGE VISTA ==> ((brain, brain left-hemisphere right-hemisphere human)

GENERATE RELEVANT PROPOSITION POOL

GENERATE DISCOURSE PLAN:
(definition attributive constituent attributive attributive illustration)

GLOBAL FOCUS (DISCOURSE TOPIC) ->, (brain)

LOCAL FOCUS PREFERENCE ==> (brain)
PREDICATE SELECTED ==)
(definition ((brain))

((region))
(:iocation (skull human)) (function (understanding))))

LOCAL FOCUS PREFERENCE ==> (region brain)

PREDICATE SELECTED ==)
(attributive ((region brain)) ((value importance indef ten relative)))

LOCAL FOCUS PREFERENCE --) (brain)
PREDICATE SELECTED --
(constituent ((brain))

((region two none))
nil
((region left-hemisphere) (region right-hemisphere)))

LOCAL FOCUS PREFERENCE ->7 (region left-hemisphere right-hemisphere brain)
PREDICATE SELECTED -)
(attributive ((region left-hemisphere))

((value imrortance indtf tan relative)))

LOCAL FOCUS PREFERENCE ==) (left-hemisphere region right-hemisphere brain
PREDICATE SELECTED =->

(attributive ((region right-hemisphere))
((value importance indef ten relative))

LOCAL FOCUS PREFERENCL ==> (right-hemisphere left-hemisphere region bi-,
PREDICATE SELECTED =->

(illustration ((region right-hemisphere)'
((region))
((location (brain rioht)) (function (gestalt-understandingm)l

SURFACE FORM

A brain is a region for understanding located in the human skull.
It has a relative importance value of ten.
It contains two regions: a left-hemisphere region and a right-hemisphere region.
The left-hemisphere region has a relative importance value of ten.
The right-homisphore region has a relative Importance value of ten.
The right-hemisphere region, for example, is a region for gestalt-understanding located in the

right brain.

2 g.ufyl.out Tue Sep 1 11:27:16 1987

PROCESSING TIME
CPU time used for processing: 8826
CPU tiee used for garbege Collection: 3057

nil
-~(exit)

qemmy2.out Tue Sep 1 11:28:49 1987

Franz Lisp, Opus 38.79
-> (include main)
[fasl main.o
t

Please enter the domain dictionary file name? neuropsychology.dict
[load nmuropsychology.dict]

What is the domain of discourse? neuropsychology.kb
[load nauropsychology.kb)

Do you wish DEFINE, EXPLAIN, or COMPARE? explain

What do you wish to know about? korsakoffs

TEXT SKETCH:

reason
evidence

SELECT KNOWLEDGE VISTA -- ((korsakoffs) korsakoffs sta-good-iq apathetic stm)

GENERATE RELEVANT PROPOSITION POOL

GENERATE DISCOURSE PLAN:
(cause-effect attributive attributive)

GLOBAL FOCUS (DISCOURSE TOPIC) =s> (korsakoffs)

LOCAL FOCUS PREFERENCE -=> (korsakoffs)
PREDICATE SELECTED ->
(cause-effect ((disorder korsakoffs))

((manifest))
nil
((observation stm-good-iq) (observation apathetic))
((damage)))

LOCAL FOCUS PREFERENCE -- > (stm-good-ig apathetic manifest damage korsakoffs)
PREDICATE SELECTED ==>
(attributive ((observation stm-good-iq)) ((value likelihood indef nine)))

LOCAL FOCUS PREFERENCE =-> (stm-good-ig apathetic manifest damage korsakoffs)
PREDICATE SELECTED -)
(attributive ((observation apathetic)) ((value likelihood indef ten)))

SURFACE FORM

Korsakoffs disorder is manifest because the msemory-ig observation and the apathetic
observation indicate damage.
The memory-iq observation has a likelihood value of nine.
The apathetic observation has a likelihood value of ten.

PROCESSING TIME
CPU time used for processing: 7632
CPU time used for garbage Collection: 2718

nil
-> (exit)

dL

gqany3.out TUe Sep 1 11:30:44 1987

Frane Lisp, Opus 38.79
-> (include ain;
[fesl amoe
t

Pleae. enter the domain dictionary file name? nouropsychology.dict
load nourop ychology.dict]

What is the domain of discourse? n.uropsychology.kb

(load neuropsychology.kbJ

Do you wish DEFINE, EXPLAIN, or COMPARE? explain

What do you wish to know about? instability

TEXT SKETCH:

reason

evidence

SELECT KNOWLEDGE VISTA -> ((instability) instability personality sex-activity ltemporal)

GENERATE RELEVANT PROPOSITION POOL

GENERATE DISCOURSE PLAN:
(cause-effect attributive attributive)

GLOBAL FOCUS (DISCOURSE TOPIC) -> (instability)

LOCAL FOCUS PREFERENCE a-> (instability)
PREDICATE SELECTED - >
(cause-effect ((symptom instability))

((manifest))
nil
((observation personality) (observation sex-activity))
(damage))

LOCAL FOCUS PREFERENCE -=> (personality sex-activity manifest damage instability)
PREDICATE SELECTED _ >
(attributive ((observation personality)) ((value likelihood indef four)))

LOCAL FOCUS PREFERENCE -> (personality sex-activity manifest damage instability)
PREDICATE SELECTED -=)
(attributive ((observation sex-activity)) ((value likelihood indef four)))

SURFACE FORM

An instability symptom is manifest because the personality observation and the
sex-activity observation indicate damage.
The personality observation has a likelihood value of four.
The sex-activity observation has a likelihood value of four.

PROCESSING TIME
CPU time used for processing: 7624
CPU time used for garbage Collection: 2694

nil
-> (exit)

!d6

90nUy4.out Mon Aug 31 13:17:11 1987

Frans Lisp, Opus 38.79

-> (include main)
(fasl main.e]
t

Please enter the domain dictionary file name? neuropsychology.dict
(load nouropsychology.dict)

What is the domain of discourse? neuropsychology.kb
(load n.urepsychology.kb]

Do you wish DEFINE, EXPLAIN, or COMPARE? explain

What do you wish to know about? per nality

TEXT SKETCH:

reason
evidence

SELECT KNOWLEDGE VISTA -> ((personality) personality instability)

GENERATE RELEVANT PROPOSITION POOL

GENERATE DISCOURSE PLAN:
(cause-effect definition)

GLOBAL FOCUS (DISCOURSE TOPIC) -- > (personality)

LOCAL FOCUS PREFERENCE -=> (personality)
PREDICATE SELECTED =->
(cause-effect ((observation personality)) ((made)) nil nil ((damage)))

LOCAL FOCUS PREFERENCE -) (made damage personality)
PREDICATE SELECTED --)
(definition ((observation personality))

((observation))
((function (stability-detection)) (location (patient))))

SURPACE PORN

It is an observation for stability-detection located in a patient.

PROCESSING TIME
CPU time used for processing: 7415
CPU time used for garbage Collection: 2683

nil
-> (exit)

gamnyS.out Tue Sep 1 11:31:53 1987

Frans Lisp, Opus 38.79
-> (include main)
(fasl main.ol
t

Please enter the domain dictionary file name? neuropsychology.dict
(load neuropsychology.dict)

What in the domain of discourse? neuropsychology.kb
(load neuropsychology.kb]

Do you wish DEFINE, EXPLAIN, or COMPARE? compare

What do you wish to compare? personality
What would you like to compare it to? sex-activity

TEXT SKETCH:

introduction
introduction
comparison
conclusion

SELECT KNOWLEDGE VISTA ->5 ((personality sex-activity) personality sex-activity instability ins
tability)

GENERATE RELEVANT PROPOSITION POOL

GENERATE DISCOURSE PLAN:
(definition attributive definition attributive compare-contrast inference)

GLOBAL FOCUS (DISCOURSE TOPIC) -- > (personality sex-activity)

LOCAL FOCUS PREFERENCE --> (personality sex-activity)
PREDICATE SELECTED ->
(definition ((observation personality))

((observation))
((function (stability-detection)) (location (patient))))

LOCAL FOCUS PREFERENCE --) (personality sex-activity observation)
PREDICATE SELECTED -)
(attributive ((observation personality)) ((value likelihood indef four)))

LOCAL FOCUS PREFERENCE --) (personality Sex-activity)
PREDICATE SELECTED ->
(definition ((observation sex-activity))

((observation))
))function (intrapersonal-behavior))))

LOCAL FOCUS PREFERENCE -= (personality sex-activity observation)
PREDICATE SELECTED we>
(attributive ((observation sex-activity)) ((value likelihood indef four)))

LOCAL FOCUS PREFERENCE --> (personality sex-activity)
PREDICATE SELECTED -=>
(compare-contrast ((personality) (sex-activity))

((class different) (type similar) (importance similar)))

LOCAL FOCUS PREFERENCE -Y (personality sex-activity class type importance)
PREDICATE SELECTED ->
(inference ((observation personality) (observation sex-activity))

((entity similar none)))

SURFACE FORM

A personality observation is an observation for stability-detection located in
It has a likelihood v.lue of four.
A sex-activity observation is an observation for intrapersonal-behavior.
It has a likelihood value of four.
Personality and it have a different class, a vimilar tye and a similar im

,
,

,

It and the sex-activity observation, therefore, are similar entities.

PROCESSING TIME
CPU tie used for processing: 8(94
CPU time used for garbage Collection: 3050

nil
-> (exit)

: ,,. 4, r .. _ Lak m _ -d a, ,.. ,

gony.out Tue sap 1 11:40:58 1987

Franz Lisp, Opus 38.79
-> (include main)
(feel main.o
t

Please enter the domain dictionary file name? neuropsychology.dict
[load neuropsychology.dict

What is the domain of discourse? neuropsychology.kb

(load neuropsychology.kb

Do you wish DEFINE, EXPLAIN, or COMPARE? explain

What do you wish to know about? itemporal

TEXT SKETCH:

reason
evidence

SELECT KNOWLEDGE VISTA -> ((ltemporal) ltemporal naming instability left-hemisphere)

GENERATE RELEVANT PROPOSITION POOL

GENERATE DISCOURSE PLAN:
(cause-effect attributive attributive)

GLOBAL FOCUS (DISCOURSE TOPIC) --> (ltemporal(

LOCAL FOCUS PREFERENCE -> (ltemporal)
PREDICATE SELECTED -->
(cause-effect ((lobe Itemporal))

((damaged nil none))
nil
((symptom naming) (symptom instability))
((damage)))

LOCAL FOCUS PREFERENCE -- > (naming instability damaged damage Itemporal)
PREDICATE SELECTED ->
(attributive ((symptom naming)) ((value likelihood indef two)))

LOCAL FOCUS PREFERENCE -- > (naming instability damaged damage ltemporal)
PREDICATE SELECTED ->
(attributive ((symptom instability)) ((value likelihood indef four)))

SURFACE FORM

The left-temporal lobe is damaged because the naming symptom
and the instability symptom indicate damage.

The naming symptom has a likelihood value of two.
The instability symptom has a likelihood value of four.

PROCESSING TIME
CPU time used for processing: 7601
CPU time used for garbage Collection: 2699

nil
-> (exit)

I emmY1.out Tue Sep 1 11:40:07 1987

Frans Lisp, opus 38.79
-> (include main)
Ifasi main.oj
t

Please, enter the domain dictionary file name? neuropsychology.dict
[load nouropsychology.dictl

What in the domain of discourse? nouropsychology.kb

[load nouropsychology.kb[

Do you wish DEFINE, EXPLAIN, or COMPARE? define

What do you wish to know about? left-hemisphere

TEXT SKETCH:

introduction
description
example

SELECT KNOWLEDGE VISTA =-> ((left-hemisphere) left-hemisphere Ifrontal lparietal lsubcortex It*

eporel loccipital brain)

GENERATE RELEVANT PROPOSITION POOL

GENERATE DISCOURSE PLAN:
(definition attributive

constituent
attributive
attributive
attributive
attributive
attributive
illustration)

GLOBAL FOCUS (DISCOURSE TOPIC) *-> (left-hemisphere)

LOCAL FOCUS PREFERENCE --) (loft-hemisphere)
PREDICATE SELECTED -- >
(definition ((left-hemisphere))

((region))
((location (brain left)) (function (feature-recognition)))

LOCAL FOCUS PREFERENCE -) (region left-hemisphere)
PREDICATE SELECTED -)
(attributive ((region left-hemisphere)

((Value importance indef ten relative)))

LOCAL FOCUS PREFERENCE -- (left-hemisphere)
PREDICATE SELECTED ..>
(constituent ((left-hemisphere))

((lobe five none))
nil
((lobe Ifrontal)
(lobe Iparietal)
(lobe Isubcortex)
(lobe itemporal)
(lobe loccipital))

LOCAL FOCUS PREFERENCE -> (lobe lfrontal lparietal lsubcortex ltemporal loccipital left-hemisp
here)

PREDICATE SELECTED -

(attributive ((lobe Ifrontal)) ((value importance indef five relative))

LOCAL FOCUS PREFERENCE -> (Ifrontal lobe lparietal isubcortex ltemporal ~:' 1(-h
here)

PREDICATE SELECTED a

(attributive ((lobe lparietal) (((value importance jodef three relati-I

LOCAL FOCUS PREFERENCE -=> (lparietol ifrontal lcbe lobc-rtec. 1temp-l1-
here)

PREDICATE SELECTED -->
(at ibutive ((lobe laubcortex)) ((value importance indef five relative)

LOCAL Focus PREFERENCE -c>)lsubcortsx lparietal lfrontal lobe ltemporal loccipital left-hemiop
here)

PREDICATE SELECTEDc)
(attributive ((lobe ltemporal)) :(value importance indef eight relative)))

LOCAL FOCUS PREFERENCE -c>)ltemporal leubrortex lpariotsl lfrontal lobe loccipitel left-hemisp
here)

PREDICATE SELECTED c

(attributive ((Iobe loccipital)) ((value importance indef three relative)))

gOUT.0ut TUO Sep 1 11:40:07 1987

LOCAL FOCUS PREFERENCE .-) (loccipital Itemporal lsubcortex lpariotal lfrontal lobe left-hemisp
here)

PREDICATE SELECTED -l

(illustration ((lobe loccipital))
((lobe))
((location (skull human)) (function (vision))))

SURFACE FORM

A left-hemisphere is a region for feature-recognition located in the left brain.

It has a relative importance value of ten.
It contains five lobes: the left-frontal lobe, the left-parietal lobe,
the left-subcortss lobe, ths left-temporal lobe and the left-occipital lobe.
The loft-frontal lobe has a relative importance value of five.
The left-parietal lobe has a relative importance value of three.
The left-subcortex lobe has a relative importance value of five.
The left-temporal lobe has a relative importance value of eight.
The left-occipital lobe has a relative importance value of three.
It, for example, is a lobe for vision located in the human skull.

PROCESSING TIME
CPU time used for processing: 10403
CPU time used for garbage Collection: 3452

nil

-> (exit)

gommye.out Tue Sep 1 11:42:56 1987

Frans Lisp, Opus 38.79
-> (include main)
[feel main.o]
t

Please enter the domain dictionary file name? neuropsychology.dict
flood nouropsychology.dict)

What is the domain of discourse? neuropsychology.kb
fload neuropsychology.kbh

Do you wish DEFINE, EXPLAIN, or COMPARE? explain

What do you wish to know about? 1-cog-flexibility

TEXT SKETCH:

reason

evidence

SELECT KNOWLEDGE VISTA --) ((1-cog-flexibility) 1-cog-flexibility m-n m-n-perseveration loops 1
oops-perseveration wisconsin lfrontal)

GENERATE RELEVANT PROPOSITION POOL

GENERATE DISCOURSE PLAN:
(cause-effect attributive attributive attributive attributive attributive)

GLOBAL FOCUS (DISCOURSE TOPIC) --) (1-cog-flexibility)

LOCAL FOCUS PREFERENCE e-) (1-cog-flexibility)
PREDICATE SELECTED --)
(cause-effect ((symptom 1-cog-flexibility))

((manifest))
nil
((observation a-n)
(observation m-n-perseveration)
(observation loops)
(observation loops-perseveration)

(obiervation wisconsin))
((damage)))

LOCAL FOCUS PREFERENCE =-> (m-n m-n-perseveration loops loops-perseveration wisconsin manifest
damage 1-cog-flexibility)

PREDICATE SELECTED -->
(attributive ((observation .-n)) ((value likelihood indef five)))

LJCAL FOCUS PREFERENCE --> (m-n m-n-perseveration loops loops-perseveration wisconsin manifest
lamage 1-cog-flexibility)

PREDICATE SELECTED e->

(attributive ((observation m-n-perseveration))
((value likelihood indef seven)))

LOCAL FOCUS PREFERENCE --> (m-n-perseveration m-n loops loops-perseveration wisconsin manifest
damage 1-cog-flexibility)

PREDICATE SELECTED cc>

(attributive ((observation loops)) ((value likelihood indef nine)))

LOCAL FOCUS PREFERENCE --> (loops s-n-perseveration m-n loops-perseveration wisconsin manifest
damage 1-cog-flexibility)

PREDICATE SELECTED cc)
(attributive ((observation loops-persevoration))

((value likelihood indef six)))

LOCAL FOCUS PREFERENCE --> (loops-perseveration loops m-n-perseveration m-n -- nin manif.ft
damage 1-cog-flexibility)

PREDICATE SELECTED -->
(attributive ((observation wisconsin)) ((value likelihood indef nine))

SURFACE FORM

The left-cognitive-flexibility symptom is manifest because the m-n obser"tion,
the m-n-perseveration observation, the lops observation, the loops-perseveration
the observation and the wisconsin observation indicate damage.
The m-n observation has a likelihood value of five.
The m-n-perseveration observation has a likelihood value of seven.
The loops observation has a likelihood value of nine.
The loops-perseveration observation has a likelihood value of six.
The wisconsin observation has a likelihood value of nine.

PROCESSING TIME
CPU time used for processing: 9001
CPU time used for garbage Collection: 3083

'dL

jemays.out Tue Sep 1 11:45:59 1987

Franz Lisp, Opus 38.79
-> (include min)
real main.o)
t

Please enter the domain dictionary file name? photo.dict

(load photo.dict(

What is the domain of discourse? photo.kb
[load photo.kb]

Do you wish DEFINE, EXPLAIN, or COMPARE? define

What do you wish to know about? equipment

TEXT SKETCB:

introduction

description

example

SELECT KNOWLEDGE VISTA --) ((equipment) equipment camera lighting tripod photography)

GENERATE RELEVANT PROPOSITION POOL

GENERATE DISCOURSE PLAN:
(definition attributive

constituent
attributive
attributive

attributive
illustration)

GLOBAL FOCUS (DISCOURSE TOPIC) -- > (equipment)

LOCAL FOCUS PREFERENCE -- > (equipment)

PREDICATE SELECTED -- >

(definition ((faslt equipmentl)
((fault))

((instrument (function physical)) (location (camera))))

LOCAL FOCUS PREFERENCE -. > (fault equipment)

PREDICATE SELECTED -- >
(attributive ((fault equipment)) ((value importance indef three relative)))

LOCAL FOCUS PREFERENCE -- > (equipment)

PREDICATE SELECTED -=)
(constituent ((equipment))

((instrument three none))
nil

((instrument camera) (fault lighting) (instrument tripod)))

LOCAL FOCUS PREFERENCE = (instrument camera lighting tripod equipment)
PREDICATE SELECTED -->
(attributive ((instrument camera)) ((value importance indef nine relative))

LOCAL FOCUS PREFERENCE -- > (camera instrument lighting tripod equipment)
PREDICATE SELECTED -

(attributive ((fault lighting)) ((value importance indef ten relative)))

LOCAL FOCUS PREFERENCE -)S (lighting camera instrument tripod equipment)

PREDICATE SELECTED .- >
(attributive ((instrument tripodl) ((value importance indef three relative)

LOCAL FOCUS PREFERENCE -=> (tripod lighting camera instrument equipment)

PREDICATE SELECTED -=)
(illustration ((instrument tripod))

1(instrument))
((instrument (logs alluminuM11 (function (support camera- ,

SURFACE FORN

An equipment fault is a fault with a physical function locatd in a oamela.
It has a relative importance value of three.
It contains three instruments: a camera instrument, a lighting instrument
and a tripod instrument.

ThA camera instrument has a relative importance value of nine.

The lighting instrument has a relative importance value of ten.
The tripod instrument has a relative importance value of throe.

It, for example, is an instrument with alluminum legs for camera support.

PROCESSING TIME
CPU time used for processing: 11147
CPU time used for garbage Collection: 3794

g9mnylO.out TUe Sop 1 11:49:37 1987

Frans Lisp, Opus 38.79
-) (include main)
ffaal main-of
t

Please enter the domain dictionary file nae? photo.dict

(load photo.dict]

What is the domain of discourse? photo.kb

(load photo.kb(

Do you wish DEFINE, EXPLAIN, or COMPARE? define

What do you wish to know about? photography

TEXT SETCH:

introduction
description

example

SELECT KNOWLEDGE VISTA c- ((photography) photography equipment technique style expression)

GENERATE RELEVANT PROPOSITION POOL

GENERATE DISCOURSE PLAN:
(definition attributive

constituent
attributive

attributive
attributive
illustration)

GLOBAL FOCUS (DISCOURSE TOPIC) --) (photography)

LOCAL FOCUS PREFERENCE -- (photography)

rREDICATE SELECTED -- >
(definition ((photography))

((art-form))
(function (images recording)) (external-location (film))))

LOCAL FOCUS PREFERENCE oc) (art-form photography)
PREDICATE SELECTED --)

(attributive ((art-form photography)) ((value importance indef ten relative)))

LOCAL FOCUS PREFERENCE -- > (photography)

PREDICATE SELECTED --)

(constituent ((photography))
((fault three none))

nil

((fault equipment) (fault technique) (fault style)))

LOCAL FOCUS PREFERENCE -- > (fault equipment technique style photography)

PREDICATE SELECTED -- >
(attributive ((fault equipment)) ((value importance indef three relative)))

LOCAL FOCUS PREFERENCE -- > (equipment fault technique style photography)

PREDICATE SELECTED ->
(attributive ((fault technique)) ((value importance indef four relative)))

LOCAL FOCUS PREFERENCE --) (technique equipment fault style photography)
PREDICATE SELECTED -c)

(attributive ((fault style)) ((value importance indef nine relative)))

LOCAL FOCUS PREFERENCE -- > (style technique equipment fault photography)
PREDICATE SELECTED c=)

(illustration ((fault style)) ((fault)) ((instrument (expression persone '!

SURFACE FORM

Photography is an art-form for recording images on film.
It has a relative importance value of ten.

It contains three faults: an equipment fault, s technique fault and a style fault.

The equipment fault has a relative importance value of three.

The terhnique fault has a relative importance value of four.

The style fault has a relative importance value of nine.

It, for example, is a fault with personal expression.

PROCESSING TIME
CPU time used for processing: 11143

CPU time used for garbage Collection: 3822

nil

